Metamath Proof Explorer


Theorem tsrdir

Description: A totally ordered set is a directed set. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion tsrdir A TosetRel A DirRel

Proof

Step Hyp Ref Expression
1 tsrps A TosetRel A PosetRel
2 psrel A PosetRel Rel A
3 1 2 syl A TosetRel Rel A
4 psref2 A PosetRel A A -1 = I A
5 inss1 A A -1 A
6 4 5 eqsstrrdi A PosetRel I A A
7 1 6 syl A TosetRel I A A
8 3 7 jca A TosetRel Rel A I A A
9 pstr2 A PosetRel A A A
10 1 9 syl A TosetRel A A A
11 psdmrn A PosetRel dom A = A ran A = A
12 1 11 syl A TosetRel dom A = A ran A = A
13 12 simpld A TosetRel dom A = A
14 13 sqxpeqd A TosetRel dom A × dom A = A × A
15 eqid dom A = dom A
16 15 istsr A TosetRel A PosetRel dom A × dom A A A -1
17 16 simprbi A TosetRel dom A × dom A A A -1
18 relcoi2 Rel A I A A = A
19 3 18 syl A TosetRel I A A = A
20 cnvresid I A -1 = I A
21 cnvss I A A I A -1 A -1
22 7 21 syl A TosetRel I A -1 A -1
23 20 22 eqsstrrid A TosetRel I A A -1
24 coss1 I A A -1 I A A A -1 A
25 23 24 syl A TosetRel I A A A -1 A
26 19 25 eqsstrrd A TosetRel A A -1 A
27 relcnv Rel A -1
28 relcoi1 Rel A -1 A -1 I A -1 = A -1
29 27 28 ax-mp A -1 I A -1 = A -1
30 relcnvfld Rel A A = A -1
31 3 30 syl A TosetRel A = A -1
32 31 reseq2d A TosetRel I A = I A -1
33 32 7 eqsstrrd A TosetRel I A -1 A
34 coss2 I A -1 A A -1 I A -1 A -1 A
35 33 34 syl A TosetRel A -1 I A -1 A -1 A
36 29 35 eqsstrrid A TosetRel A -1 A -1 A
37 26 36 unssd A TosetRel A A -1 A -1 A
38 17 37 sstrd A TosetRel dom A × dom A A -1 A
39 14 38 eqsstrrd A TosetRel A × A A -1 A
40 10 39 jca A TosetRel A A A A × A A -1 A
41 eqid A = A
42 41 isdir A TosetRel A DirRel Rel A I A A A A A A × A A -1 A
43 8 40 42 mpbir2and A TosetRel A DirRel