| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tsrps |
⊢ ( 𝐴 ∈ TosetRel → 𝐴 ∈ PosetRel ) |
| 2 |
|
psrel |
⊢ ( 𝐴 ∈ PosetRel → Rel 𝐴 ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ TosetRel → Rel 𝐴 ) |
| 4 |
|
psref2 |
⊢ ( 𝐴 ∈ PosetRel → ( 𝐴 ∩ ◡ 𝐴 ) = ( I ↾ ∪ ∪ 𝐴 ) ) |
| 5 |
|
inss1 |
⊢ ( 𝐴 ∩ ◡ 𝐴 ) ⊆ 𝐴 |
| 6 |
4 5
|
eqsstrrdi |
⊢ ( 𝐴 ∈ PosetRel → ( I ↾ ∪ ∪ 𝐴 ) ⊆ 𝐴 ) |
| 7 |
1 6
|
syl |
⊢ ( 𝐴 ∈ TosetRel → ( I ↾ ∪ ∪ 𝐴 ) ⊆ 𝐴 ) |
| 8 |
3 7
|
jca |
⊢ ( 𝐴 ∈ TosetRel → ( Rel 𝐴 ∧ ( I ↾ ∪ ∪ 𝐴 ) ⊆ 𝐴 ) ) |
| 9 |
|
pstr2 |
⊢ ( 𝐴 ∈ PosetRel → ( 𝐴 ∘ 𝐴 ) ⊆ 𝐴 ) |
| 10 |
1 9
|
syl |
⊢ ( 𝐴 ∈ TosetRel → ( 𝐴 ∘ 𝐴 ) ⊆ 𝐴 ) |
| 11 |
|
psdmrn |
⊢ ( 𝐴 ∈ PosetRel → ( dom 𝐴 = ∪ ∪ 𝐴 ∧ ran 𝐴 = ∪ ∪ 𝐴 ) ) |
| 12 |
1 11
|
syl |
⊢ ( 𝐴 ∈ TosetRel → ( dom 𝐴 = ∪ ∪ 𝐴 ∧ ran 𝐴 = ∪ ∪ 𝐴 ) ) |
| 13 |
12
|
simpld |
⊢ ( 𝐴 ∈ TosetRel → dom 𝐴 = ∪ ∪ 𝐴 ) |
| 14 |
13
|
sqxpeqd |
⊢ ( 𝐴 ∈ TosetRel → ( dom 𝐴 × dom 𝐴 ) = ( ∪ ∪ 𝐴 × ∪ ∪ 𝐴 ) ) |
| 15 |
|
eqid |
⊢ dom 𝐴 = dom 𝐴 |
| 16 |
15
|
istsr |
⊢ ( 𝐴 ∈ TosetRel ↔ ( 𝐴 ∈ PosetRel ∧ ( dom 𝐴 × dom 𝐴 ) ⊆ ( 𝐴 ∪ ◡ 𝐴 ) ) ) |
| 17 |
16
|
simprbi |
⊢ ( 𝐴 ∈ TosetRel → ( dom 𝐴 × dom 𝐴 ) ⊆ ( 𝐴 ∪ ◡ 𝐴 ) ) |
| 18 |
|
relcoi2 |
⊢ ( Rel 𝐴 → ( ( I ↾ ∪ ∪ 𝐴 ) ∘ 𝐴 ) = 𝐴 ) |
| 19 |
3 18
|
syl |
⊢ ( 𝐴 ∈ TosetRel → ( ( I ↾ ∪ ∪ 𝐴 ) ∘ 𝐴 ) = 𝐴 ) |
| 20 |
|
cnvresid |
⊢ ◡ ( I ↾ ∪ ∪ 𝐴 ) = ( I ↾ ∪ ∪ 𝐴 ) |
| 21 |
|
cnvss |
⊢ ( ( I ↾ ∪ ∪ 𝐴 ) ⊆ 𝐴 → ◡ ( I ↾ ∪ ∪ 𝐴 ) ⊆ ◡ 𝐴 ) |
| 22 |
7 21
|
syl |
⊢ ( 𝐴 ∈ TosetRel → ◡ ( I ↾ ∪ ∪ 𝐴 ) ⊆ ◡ 𝐴 ) |
| 23 |
20 22
|
eqsstrrid |
⊢ ( 𝐴 ∈ TosetRel → ( I ↾ ∪ ∪ 𝐴 ) ⊆ ◡ 𝐴 ) |
| 24 |
|
coss1 |
⊢ ( ( I ↾ ∪ ∪ 𝐴 ) ⊆ ◡ 𝐴 → ( ( I ↾ ∪ ∪ 𝐴 ) ∘ 𝐴 ) ⊆ ( ◡ 𝐴 ∘ 𝐴 ) ) |
| 25 |
23 24
|
syl |
⊢ ( 𝐴 ∈ TosetRel → ( ( I ↾ ∪ ∪ 𝐴 ) ∘ 𝐴 ) ⊆ ( ◡ 𝐴 ∘ 𝐴 ) ) |
| 26 |
19 25
|
eqsstrrd |
⊢ ( 𝐴 ∈ TosetRel → 𝐴 ⊆ ( ◡ 𝐴 ∘ 𝐴 ) ) |
| 27 |
|
relcnv |
⊢ Rel ◡ 𝐴 |
| 28 |
|
relcoi1 |
⊢ ( Rel ◡ 𝐴 → ( ◡ 𝐴 ∘ ( I ↾ ∪ ∪ ◡ 𝐴 ) ) = ◡ 𝐴 ) |
| 29 |
27 28
|
ax-mp |
⊢ ( ◡ 𝐴 ∘ ( I ↾ ∪ ∪ ◡ 𝐴 ) ) = ◡ 𝐴 |
| 30 |
|
relcnvfld |
⊢ ( Rel 𝐴 → ∪ ∪ 𝐴 = ∪ ∪ ◡ 𝐴 ) |
| 31 |
3 30
|
syl |
⊢ ( 𝐴 ∈ TosetRel → ∪ ∪ 𝐴 = ∪ ∪ ◡ 𝐴 ) |
| 32 |
31
|
reseq2d |
⊢ ( 𝐴 ∈ TosetRel → ( I ↾ ∪ ∪ 𝐴 ) = ( I ↾ ∪ ∪ ◡ 𝐴 ) ) |
| 33 |
32 7
|
eqsstrrd |
⊢ ( 𝐴 ∈ TosetRel → ( I ↾ ∪ ∪ ◡ 𝐴 ) ⊆ 𝐴 ) |
| 34 |
|
coss2 |
⊢ ( ( I ↾ ∪ ∪ ◡ 𝐴 ) ⊆ 𝐴 → ( ◡ 𝐴 ∘ ( I ↾ ∪ ∪ ◡ 𝐴 ) ) ⊆ ( ◡ 𝐴 ∘ 𝐴 ) ) |
| 35 |
33 34
|
syl |
⊢ ( 𝐴 ∈ TosetRel → ( ◡ 𝐴 ∘ ( I ↾ ∪ ∪ ◡ 𝐴 ) ) ⊆ ( ◡ 𝐴 ∘ 𝐴 ) ) |
| 36 |
29 35
|
eqsstrrid |
⊢ ( 𝐴 ∈ TosetRel → ◡ 𝐴 ⊆ ( ◡ 𝐴 ∘ 𝐴 ) ) |
| 37 |
26 36
|
unssd |
⊢ ( 𝐴 ∈ TosetRel → ( 𝐴 ∪ ◡ 𝐴 ) ⊆ ( ◡ 𝐴 ∘ 𝐴 ) ) |
| 38 |
17 37
|
sstrd |
⊢ ( 𝐴 ∈ TosetRel → ( dom 𝐴 × dom 𝐴 ) ⊆ ( ◡ 𝐴 ∘ 𝐴 ) ) |
| 39 |
14 38
|
eqsstrrd |
⊢ ( 𝐴 ∈ TosetRel → ( ∪ ∪ 𝐴 × ∪ ∪ 𝐴 ) ⊆ ( ◡ 𝐴 ∘ 𝐴 ) ) |
| 40 |
10 39
|
jca |
⊢ ( 𝐴 ∈ TosetRel → ( ( 𝐴 ∘ 𝐴 ) ⊆ 𝐴 ∧ ( ∪ ∪ 𝐴 × ∪ ∪ 𝐴 ) ⊆ ( ◡ 𝐴 ∘ 𝐴 ) ) ) |
| 41 |
|
eqid |
⊢ ∪ ∪ 𝐴 = ∪ ∪ 𝐴 |
| 42 |
41
|
isdir |
⊢ ( 𝐴 ∈ TosetRel → ( 𝐴 ∈ DirRel ↔ ( ( Rel 𝐴 ∧ ( I ↾ ∪ ∪ 𝐴 ) ⊆ 𝐴 ) ∧ ( ( 𝐴 ∘ 𝐴 ) ⊆ 𝐴 ∧ ( ∪ ∪ 𝐴 × ∪ ∪ 𝐴 ) ⊆ ( ◡ 𝐴 ∘ 𝐴 ) ) ) ) ) |
| 43 |
8 40 42
|
mpbir2and |
⊢ ( 𝐴 ∈ TosetRel → 𝐴 ∈ DirRel ) |