Metamath Proof Explorer


Theorem tsrdir

Description: A totally ordered set is a directed set. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion tsrdir ( 𝐴 ∈ TosetRel → 𝐴 ∈ DirRel )

Proof

Step Hyp Ref Expression
1 tsrps ( 𝐴 ∈ TosetRel → 𝐴 ∈ PosetRel )
2 psrel ( 𝐴 ∈ PosetRel → Rel 𝐴 )
3 1 2 syl ( 𝐴 ∈ TosetRel → Rel 𝐴 )
4 psref2 ( 𝐴 ∈ PosetRel → ( 𝐴 𝐴 ) = ( I ↾ 𝐴 ) )
5 inss1 ( 𝐴 𝐴 ) ⊆ 𝐴
6 4 5 eqsstrrdi ( 𝐴 ∈ PosetRel → ( I ↾ 𝐴 ) ⊆ 𝐴 )
7 1 6 syl ( 𝐴 ∈ TosetRel → ( I ↾ 𝐴 ) ⊆ 𝐴 )
8 3 7 jca ( 𝐴 ∈ TosetRel → ( Rel 𝐴 ∧ ( I ↾ 𝐴 ) ⊆ 𝐴 ) )
9 pstr2 ( 𝐴 ∈ PosetRel → ( 𝐴𝐴 ) ⊆ 𝐴 )
10 1 9 syl ( 𝐴 ∈ TosetRel → ( 𝐴𝐴 ) ⊆ 𝐴 )
11 psdmrn ( 𝐴 ∈ PosetRel → ( dom 𝐴 = 𝐴 ∧ ran 𝐴 = 𝐴 ) )
12 1 11 syl ( 𝐴 ∈ TosetRel → ( dom 𝐴 = 𝐴 ∧ ran 𝐴 = 𝐴 ) )
13 12 simpld ( 𝐴 ∈ TosetRel → dom 𝐴 = 𝐴 )
14 13 sqxpeqd ( 𝐴 ∈ TosetRel → ( dom 𝐴 × dom 𝐴 ) = ( 𝐴 × 𝐴 ) )
15 eqid dom 𝐴 = dom 𝐴
16 15 istsr ( 𝐴 ∈ TosetRel ↔ ( 𝐴 ∈ PosetRel ∧ ( dom 𝐴 × dom 𝐴 ) ⊆ ( 𝐴 𝐴 ) ) )
17 16 simprbi ( 𝐴 ∈ TosetRel → ( dom 𝐴 × dom 𝐴 ) ⊆ ( 𝐴 𝐴 ) )
18 relcoi2 ( Rel 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝐴 ) = 𝐴 )
19 3 18 syl ( 𝐴 ∈ TosetRel → ( ( I ↾ 𝐴 ) ∘ 𝐴 ) = 𝐴 )
20 cnvresid ( I ↾ 𝐴 ) = ( I ↾ 𝐴 )
21 cnvss ( ( I ↾ 𝐴 ) ⊆ 𝐴 ( I ↾ 𝐴 ) ⊆ 𝐴 )
22 7 21 syl ( 𝐴 ∈ TosetRel → ( I ↾ 𝐴 ) ⊆ 𝐴 )
23 20 22 eqsstrrid ( 𝐴 ∈ TosetRel → ( I ↾ 𝐴 ) ⊆ 𝐴 )
24 coss1 ( ( I ↾ 𝐴 ) ⊆ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝐴 ) ⊆ ( 𝐴𝐴 ) )
25 23 24 syl ( 𝐴 ∈ TosetRel → ( ( I ↾ 𝐴 ) ∘ 𝐴 ) ⊆ ( 𝐴𝐴 ) )
26 19 25 eqsstrrd ( 𝐴 ∈ TosetRel → 𝐴 ⊆ ( 𝐴𝐴 ) )
27 relcnv Rel 𝐴
28 relcoi1 ( Rel 𝐴 → ( 𝐴 ∘ ( I ↾ 𝐴 ) ) = 𝐴 )
29 27 28 ax-mp ( 𝐴 ∘ ( I ↾ 𝐴 ) ) = 𝐴
30 relcnvfld ( Rel 𝐴 𝐴 = 𝐴 )
31 3 30 syl ( 𝐴 ∈ TosetRel → 𝐴 = 𝐴 )
32 31 reseq2d ( 𝐴 ∈ TosetRel → ( I ↾ 𝐴 ) = ( I ↾ 𝐴 ) )
33 32 7 eqsstrrd ( 𝐴 ∈ TosetRel → ( I ↾ 𝐴 ) ⊆ 𝐴 )
34 coss2 ( ( I ↾ 𝐴 ) ⊆ 𝐴 → ( 𝐴 ∘ ( I ↾ 𝐴 ) ) ⊆ ( 𝐴𝐴 ) )
35 33 34 syl ( 𝐴 ∈ TosetRel → ( 𝐴 ∘ ( I ↾ 𝐴 ) ) ⊆ ( 𝐴𝐴 ) )
36 29 35 eqsstrrid ( 𝐴 ∈ TosetRel → 𝐴 ⊆ ( 𝐴𝐴 ) )
37 26 36 unssd ( 𝐴 ∈ TosetRel → ( 𝐴 𝐴 ) ⊆ ( 𝐴𝐴 ) )
38 17 37 sstrd ( 𝐴 ∈ TosetRel → ( dom 𝐴 × dom 𝐴 ) ⊆ ( 𝐴𝐴 ) )
39 14 38 eqsstrrd ( 𝐴 ∈ TosetRel → ( 𝐴 × 𝐴 ) ⊆ ( 𝐴𝐴 ) )
40 10 39 jca ( 𝐴 ∈ TosetRel → ( ( 𝐴𝐴 ) ⊆ 𝐴 ∧ ( 𝐴 × 𝐴 ) ⊆ ( 𝐴𝐴 ) ) )
41 eqid 𝐴 = 𝐴
42 41 isdir ( 𝐴 ∈ TosetRel → ( 𝐴 ∈ DirRel ↔ ( ( Rel 𝐴 ∧ ( I ↾ 𝐴 ) ⊆ 𝐴 ) ∧ ( ( 𝐴𝐴 ) ⊆ 𝐴 ∧ ( 𝐴 × 𝐴 ) ⊆ ( 𝐴𝐴 ) ) ) ) )
43 8 40 42 mpbir2and ( 𝐴 ∈ TosetRel → 𝐴 ∈ DirRel )