Metamath Proof Explorer


Theorem ttrclselem1

Description: Lemma for ttrclse . Show that all finite ordinal function values of F are subsets of A . (Contributed by Scott Fenton, 31-Oct-2024)

Ref Expression
Hypothesis ttrclselem.1 F = rec b V w b Pred R A w Pred R A X
Assertion ttrclselem1 N ω F N A

Proof

Step Hyp Ref Expression
1 ttrclselem.1 F = rec b V w b Pred R A w Pred R A X
2 nn0suc N ω N = n ω N = suc n
3 1 fveq1i F N = rec b V w b Pred R A w Pred R A X N
4 fveq2 N = rec b V w b Pred R A w Pred R A X N = rec b V w b Pred R A w Pred R A X
5 3 4 eqtrid N = F N = rec b V w b Pred R A w Pred R A X
6 rdg0g Pred R A X V rec b V w b Pred R A w Pred R A X = Pred R A X
7 predss Pred R A X A
8 6 7 eqsstrdi Pred R A X V rec b V w b Pred R A w Pred R A X A
9 rdg0n ¬ Pred R A X V rec b V w b Pred R A w Pred R A X =
10 0ss A
11 9 10 eqsstrdi ¬ Pred R A X V rec b V w b Pred R A w Pred R A X A
12 8 11 pm2.61i rec b V w b Pred R A w Pred R A X A
13 5 12 eqsstrdi N = F N A
14 nnon n ω n On
15 nfcv _ b Pred R A X
16 nfcv _ b n
17 nfmpt1 _ b b V w b Pred R A w
18 17 15 nfrdg _ b rec b V w b Pred R A w Pred R A X
19 1 18 nfcxfr _ b F
20 19 16 nffv _ b F n
21 nfcv _ b Pred R A t
22 20 21 nfiun _ b t F n Pred R A t
23 predeq3 w = t Pred R A w = Pred R A t
24 23 cbviunv w b Pred R A w = t b Pred R A t
25 iuneq1 b = F n t b Pred R A t = t F n Pred R A t
26 24 25 eqtrid b = F n w b Pred R A w = t F n Pred R A t
27 15 16 22 1 26 rdgsucmptf n On t F n Pred R A t V F suc n = t F n Pred R A t
28 iunss t F n Pred R A t A t F n Pred R A t A
29 predss Pred R A t A
30 29 a1i t F n Pred R A t A
31 28 30 mprgbir t F n Pred R A t A
32 27 31 eqsstrdi n On t F n Pred R A t V F suc n A
33 14 32 sylan n ω t F n Pred R A t V F suc n A
34 15 16 22 1 26 rdgsucmptnf ¬ t F n Pred R A t V F suc n =
35 34 10 eqsstrdi ¬ t F n Pred R A t V F suc n A
36 35 adantl n ω ¬ t F n Pred R A t V F suc n A
37 33 36 pm2.61dan n ω F suc n A
38 fveq2 N = suc n F N = F suc n
39 38 sseq1d N = suc n F N A F suc n A
40 37 39 syl5ibrcom n ω N = suc n F N A
41 40 rexlimiv n ω N = suc n F N A
42 13 41 jaoi N = n ω N = suc n F N A
43 2 42 syl N ω F N A