Metamath Proof Explorer


Theorem ufildr

Description: An ultrafilter gives rise to a connected door topology. (Contributed by Jeff Hankins, 6-Dec-2009) (Revised by Stefan O'Rear, 3-Aug-2015)

Ref Expression
Hypothesis ufildr.1 J = F
Assertion ufildr F UFil X J Clsd J = 𝒫 X

Proof

Step Hyp Ref Expression
1 ufildr.1 J = F
2 elssuni x J x J
3 1 unieqi J = F
4 uniun F = F
5 0ex V
6 5 unisn =
7 6 uneq2i F = F
8 un0 F = F
9 4 7 8 3eqtri F = F
10 3 9 eqtr2i F = J
11 ufilfil F UFil X F Fil X
12 filunibas F Fil X F = X
13 11 12 syl F UFil X F = X
14 10 13 syl5reqr F UFil X X = J
15 14 sseq2d F UFil X x X x J
16 2 15 syl5ibr F UFil X x J x X
17 eqid J = J
18 17 cldss x Clsd J x J
19 18 15 syl5ibr F UFil X x Clsd J x X
20 16 19 jaod F UFil X x J x Clsd J x X
21 ufilss F UFil X x X x F X x F
22 ssun1 F F
23 22 1 sseqtrri F J
24 23 a1i F UFil X x X F J
25 24 sseld F UFil X x X x F x J
26 24 sseld F UFil X x X X x F X x J
27 filconn F Fil X F Conn
28 conntop F Conn F Top
29 11 27 28 3syl F UFil X F Top
30 1 29 eqeltrid F UFil X J Top
31 15 biimpa F UFil X x X x J
32 17 iscld2 J Top x J x Clsd J J x J
33 30 31 32 syl2an2r F UFil X x X x Clsd J J x J
34 14 difeq1d F UFil X X x = J x
35 34 eleq1d F UFil X X x J J x J
36 35 adantr F UFil X x X X x J J x J
37 33 36 bitr4d F UFil X x X x Clsd J X x J
38 26 37 sylibrd F UFil X x X X x F x Clsd J
39 25 38 orim12d F UFil X x X x F X x F x J x Clsd J
40 21 39 mpd F UFil X x X x J x Clsd J
41 40 ex F UFil X x X x J x Clsd J
42 20 41 impbid F UFil X x J x Clsd J x X
43 elun x J Clsd J x J x Clsd J
44 velpw x 𝒫 X x X
45 42 43 44 3bitr4g F UFil X x J Clsd J x 𝒫 X
46 45 eqrdv F UFil X J Clsd J = 𝒫 X