| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ufildr.1 |  | 
						
							| 2 |  | elssuni |  | 
						
							| 3 |  | ufilfil |  | 
						
							| 4 |  | filunibas |  | 
						
							| 5 | 3 4 | syl |  | 
						
							| 6 | 1 | unieqi |  | 
						
							| 7 |  | uniun |  | 
						
							| 8 |  | 0ex |  | 
						
							| 9 | 8 | unisn |  | 
						
							| 10 | 9 | uneq2i |  | 
						
							| 11 |  | un0 |  | 
						
							| 12 | 7 10 11 | 3eqtri |  | 
						
							| 13 | 6 12 | eqtr2i |  | 
						
							| 14 | 5 13 | eqtr3di |  | 
						
							| 15 | 14 | sseq2d |  | 
						
							| 16 | 2 15 | imbitrrid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 | cldss |  | 
						
							| 19 | 18 15 | imbitrrid |  | 
						
							| 20 | 16 19 | jaod |  | 
						
							| 21 |  | ufilss |  | 
						
							| 22 |  | ssun1 |  | 
						
							| 23 | 22 1 | sseqtrri |  | 
						
							| 24 | 23 | a1i |  | 
						
							| 25 | 24 | sseld |  | 
						
							| 26 | 24 | sseld |  | 
						
							| 27 |  | filconn |  | 
						
							| 28 |  | conntop |  | 
						
							| 29 | 3 27 28 | 3syl |  | 
						
							| 30 | 1 29 | eqeltrid |  | 
						
							| 31 | 15 | biimpa |  | 
						
							| 32 | 17 | iscld2 |  | 
						
							| 33 | 30 31 32 | syl2an2r |  | 
						
							| 34 | 14 | difeq1d |  | 
						
							| 35 | 34 | eleq1d |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 33 36 | bitr4d |  | 
						
							| 38 | 26 37 | sylibrd |  | 
						
							| 39 | 25 38 | orim12d |  | 
						
							| 40 | 21 39 | mpd |  | 
						
							| 41 | 40 | ex |  | 
						
							| 42 | 20 41 | impbid |  | 
						
							| 43 |  | elun |  | 
						
							| 44 |  | velpw |  | 
						
							| 45 | 42 43 44 | 3bitr4g |  | 
						
							| 46 | 45 | eqrdv |  |