Metamath Proof Explorer


Theorem ulmclm

Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015)

Ref Expression
Hypotheses ulmclm.z Z=M
ulmclm.m φM
ulmclm.f φF:ZS
ulmclm.a φAS
ulmclm.h φHW
ulmclm.e φkZFkA=Hk
ulmclm.u φFuSG
Assertion ulmclm φHGA

Proof

Step Hyp Ref Expression
1 ulmclm.z Z=M
2 ulmclm.m φM
3 ulmclm.f φF:ZS
4 ulmclm.a φAS
5 ulmclm.h φHW
6 ulmclm.e φkZFkA=Hk
7 ulmclm.u φFuSG
8 fveq2 z=AFkz=FkA
9 fveq2 z=AGz=GA
10 8 9 oveq12d z=AFkzGz=FkAGA
11 10 fveq2d z=AFkzGz=FkAGA
12 11 breq1d z=AFkzGz<xFkAGA<x
13 12 rspcv ASzSFkzGz<xFkAGA<x
14 4 13 syl φzSFkzGz<xFkAGA<x
15 14 ralimdv φkjzSFkzGz<xkjFkAGA<x
16 15 reximdv φjZkjzSFkzGz<xjZkjFkAGA<x
17 16 ralimdv φx+jZkjzSFkzGz<xx+jZkjFkAGA<x
18 eqidd φkZzSFkz=Fkz
19 eqidd φzSGz=Gz
20 ulmcl FuSGG:S
21 7 20 syl φG:S
22 ulmscl FuSGSV
23 7 22 syl φSV
24 1 2 3 18 19 21 23 ulm2 φFuSGx+jZkjzSFkzGz<x
25 6 eqcomd φkZHk=FkA
26 21 4 ffvelcdmd φGA
27 3 ffvelcdmda φkZFkS
28 elmapi FkSFk:S
29 27 28 syl φkZFk:S
30 4 adantr φkZAS
31 29 30 ffvelcdmd φkZFkA
32 1 2 5 25 26 31 clim2c φHGAx+jZkjFkAGA<x
33 17 24 32 3imtr4d φFuSGHGA
34 7 33 mpd φHGA