Metamath Proof Explorer


Theorem umgr2adedgwlk

Description: In a multigraph, two adjacent edges form a walk of length 2. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 29-Jan-2021)

Ref Expression
Hypotheses umgr2adedgwlk.e E=EdgG
umgr2adedgwlk.i I=iEdgG
umgr2adedgwlk.f F=⟨“JK”⟩
umgr2adedgwlk.p P=⟨“ABC”⟩
umgr2adedgwlk.g φGUMGraph
umgr2adedgwlk.a φABEBCE
umgr2adedgwlk.j φIJ=AB
umgr2adedgwlk.k φIK=BC
Assertion umgr2adedgwlk φFWalksGPF=2A=P0B=P1C=P2

Proof

Step Hyp Ref Expression
1 umgr2adedgwlk.e E=EdgG
2 umgr2adedgwlk.i I=iEdgG
3 umgr2adedgwlk.f F=⟨“JK”⟩
4 umgr2adedgwlk.p P=⟨“ABC”⟩
5 umgr2adedgwlk.g φGUMGraph
6 umgr2adedgwlk.a φABEBCE
7 umgr2adedgwlk.j φIJ=AB
8 umgr2adedgwlk.k φIK=BC
9 3anass GUMGraphABEBCEGUMGraphABEBCE
10 5 6 9 sylanbrc φGUMGraphABEBCE
11 1 umgr2adedgwlklem GUMGraphABEBCEABBCAVtxGBVtxGCVtxG
12 10 11 syl φABBCAVtxGBVtxGCVtxG
13 12 simprd φAVtxGBVtxGCVtxG
14 12 simpld φABBC
15 ssid ABAB
16 15 7 sseqtrrid φABIJ
17 ssid BCBC
18 17 8 sseqtrrid φBCIK
19 16 18 jca φABIJBCIK
20 eqid VtxG=VtxG
21 4 3 13 14 19 20 2 2wlkd φFWalksGP
22 3 fveq2i F=⟨“JK”⟩
23 s2len ⟨“JK”⟩=2
24 22 23 eqtri F=2
25 24 a1i φF=2
26 s3fv0 AVtxG⟨“ABC”⟩0=A
27 s3fv1 BVtxG⟨“ABC”⟩1=B
28 s3fv2 CVtxG⟨“ABC”⟩2=C
29 26 27 28 3anim123i AVtxGBVtxGCVtxG⟨“ABC”⟩0=A⟨“ABC”⟩1=B⟨“ABC”⟩2=C
30 13 29 syl φ⟨“ABC”⟩0=A⟨“ABC”⟩1=B⟨“ABC”⟩2=C
31 4 fveq1i P0=⟨“ABC”⟩0
32 31 eqeq2i A=P0A=⟨“ABC”⟩0
33 eqcom A=⟨“ABC”⟩0⟨“ABC”⟩0=A
34 32 33 bitri A=P0⟨“ABC”⟩0=A
35 4 fveq1i P1=⟨“ABC”⟩1
36 35 eqeq2i B=P1B=⟨“ABC”⟩1
37 eqcom B=⟨“ABC”⟩1⟨“ABC”⟩1=B
38 36 37 bitri B=P1⟨“ABC”⟩1=B
39 4 fveq1i P2=⟨“ABC”⟩2
40 39 eqeq2i C=P2C=⟨“ABC”⟩2
41 eqcom C=⟨“ABC”⟩2⟨“ABC”⟩2=C
42 40 41 bitri C=P2⟨“ABC”⟩2=C
43 34 38 42 3anbi123i A=P0B=P1C=P2⟨“ABC”⟩0=A⟨“ABC”⟩1=B⟨“ABC”⟩2=C
44 30 43 sylibr φA=P0B=P1C=P2
45 21 25 44 3jca φFWalksGPF=2A=P0B=P1C=P2