Metamath Proof Explorer


Theorem unelsiga

Description: A sigma-algebra is closed under pairwise unions. (Contributed by Thierry Arnoux, 13-Dec-2016)

Ref Expression
Assertion unelsiga SransigAlgebraASBSABS

Proof

Step Hyp Ref Expression
1 uniprg ASBSAB=AB
2 1 3adant1 SransigAlgebraASBSAB=AB
3 isrnsigau SransigAlgebraS𝒫SSSxSSxSx𝒫SxωxS
4 3 simprd SransigAlgebraSSxSSxSx𝒫SxωxS
5 4 simp3d SransigAlgebrax𝒫SxωxS
6 5 3ad2ant1 SransigAlgebraASBSx𝒫SxωxS
7 prct ASBSABω
8 7 3adant1 SransigAlgebraASBSABω
9 prelpwi ASBSAB𝒫S
10 breq1 x=ABxωABω
11 unieq x=ABx=AB
12 11 eleq1d x=ABxSABS
13 10 12 imbi12d x=ABxωxSABωABS
14 13 rspcv AB𝒫Sx𝒫SxωxSABωABS
15 9 14 syl ASBSx𝒫SxωxSABωABS
16 15 3adant1 SransigAlgebraASBSx𝒫SxωxSABωABS
17 6 8 16 mp2d SransigAlgebraASBSABS
18 2 17 eqeltrrd SransigAlgebraASBSABS