| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uncom |
|
| 2 |
|
eqtr |
|
| 3 |
2
|
eqcomd |
|
| 4 |
|
difeq1 |
|
| 5 |
|
difun2 |
|
| 6 |
|
eqtr |
|
| 7 |
|
incom |
|
| 8 |
7
|
eqeq1i |
|
| 9 |
|
disj3 |
|
| 10 |
8 9
|
bitri |
|
| 11 |
|
eqtr |
|
| 12 |
11
|
expcom |
|
| 13 |
12
|
eqcoms |
|
| 14 |
10 13
|
sylbi |
|
| 15 |
6 14
|
syl5com |
|
| 16 |
4 5 15
|
sylancl |
|
| 17 |
3 16
|
syl |
|
| 18 |
1 17
|
mpan |
|
| 19 |
18
|
com12 |
|
| 20 |
19
|
adantl |
|
| 21 |
|
simpl |
|
| 22 |
|
difssd |
|
| 23 |
|
sseq1 |
|
| 24 |
22 23
|
mpbid |
|
| 25 |
24
|
adantl |
|
| 26 |
21 25
|
unssd |
|
| 27 |
|
eqimss |
|
| 28 |
|
ssundif |
|
| 29 |
27 28
|
sylibr |
|
| 30 |
29
|
adantl |
|
| 31 |
26 30
|
eqssd |
|
| 32 |
31
|
ex |
|
| 33 |
32
|
adantr |
|
| 34 |
20 33
|
impbid |
|