Metamath Proof Explorer


Theorem unilbeu

Description: Existential uniqueness of the greatest lower bound. (Contributed by Zhi Wang, 29-Sep-2024)

Ref Expression
Assertion unilbeu CBCAyByAyCC=xB|xA

Proof

Step Hyp Ref Expression
1 sseq1 z=CzACA
2 simpll CBCAyByAyCCB
3 simplr CBCAyByAyCCA
4 1 2 3 elrabd CBCAyByAyCCzB|zA
5 sseq1 z=xzAxA
6 5 cbvrabv zB|zA=xB|xA
7 4 6 eleqtrdi CBCAyByAyCCxB|xA
8 elssuni CxB|xACxB|xA
9 7 8 syl CBCAyByAyCCxB|xA
10 unissb xB|xACyxB|xAyC
11 sseq1 x=yxAyA
12 11 ralrab yxB|xAyCyByAyC
13 10 12 bitri xB|xACyByAyC
14 13 biimpri yByAyCxB|xAC
15 14 adantl CBCAyByAyCxB|xAC
16 9 15 eqssd CBCAyByAyCC=xB|xA
17 16 expl CBCAyByAyCC=xB|xA
18 unilbss xB|xAA
19 sseq1 C=xB|xACAxB|xAA
20 18 19 mpbiri C=xB|xACA
21 eqimss2 C=xB|xAxB|xAC
22 21 13 sylib C=xB|xAyByAyC
23 20 22 jca C=xB|xACAyByAyC
24 17 23 impbid1 CBCAyByAyCC=xB|xA