Step |
Hyp |
Ref |
Expression |
1 |
|
upcic.b |
|
2 |
|
upcic.c |
|
3 |
|
upcic.h |
|
4 |
|
upcic.j |
|
5 |
|
upcic.o |
|
6 |
|
upcic.f |
|
7 |
|
upcic.x |
|
8 |
|
upcic.y |
|
9 |
|
upcic.z |
|
10 |
|
upcic.m |
|
11 |
|
upcic.1 |
|
12 |
|
upeu2.i |
|
13 |
|
upeu2.k |
|
14 |
|
upeu2.n |
|
15 |
6
|
funcrcl3 |
|
16 |
1 2 6
|
funcf1 |
|
17 |
16 7
|
ffvelcdmd |
|
18 |
16 8
|
ffvelcdmd |
|
19 |
1 3 4 6 7 8
|
funcf2 |
|
20 |
6
|
funcrcl2 |
|
21 |
1 3 12 20 7 8
|
isohom |
|
22 |
21 13
|
sseldd |
|
23 |
19 22
|
ffvelcdmd |
|
24 |
2 4 5 15 9 17 18 10 23
|
catcocl |
|
25 |
14 24
|
eqeltrd |
|
26 |
11
|
adantr |
|
27 |
|
simprl |
|
28 |
|
simprr |
|
29 |
26 27 28
|
upciclem1 |
|
30 |
|
eqid |
|
31 |
20
|
ad2antrr |
|
32 |
7
|
ad2antrr |
|
33 |
8
|
ad2antrr |
|
34 |
27
|
adantr |
|
35 |
22
|
ad2antrr |
|
36 |
|
simpr |
|
37 |
1 3 30 31 32 33 34 35 36
|
catcocl |
|
38 |
20
|
ad2antrr |
|
39 |
7
|
ad2antrr |
|
40 |
8
|
ad2antrr |
|
41 |
27
|
adantr |
|
42 |
13
|
ad2antrr |
|
43 |
|
simpr |
|
44 |
1 3 30 12 38 39 40 41 42 43
|
upeu2lem |
|
45 |
|
simprr |
|
46 |
45
|
fveq2d |
|
47 |
46
|
oveq1d |
|
48 |
6
|
ad2antrr |
|
49 |
7
|
ad2antrr |
|
50 |
8
|
ad2antrr |
|
51 |
27
|
adantr |
|
52 |
9
|
ad2antrr |
|
53 |
10
|
ad2antrr |
|
54 |
22
|
ad2antrr |
|
55 |
|
simprl |
|
56 |
14
|
ad2antrr |
|
57 |
1 2 3 4 5 48 49 50 51 52 53 30 54 55 56
|
upciclem2 |
|
58 |
47 57
|
eqtrd |
|
59 |
58
|
eqeq2d |
|
60 |
37 44 59
|
reuxfr1dd |
|
61 |
29 60
|
mpbid |
|
62 |
61
|
ralrimivva |
|
63 |
25 62
|
jca |
|