| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upeu2lem.b |
|
| 2 |
|
upeu2lem.h |
|
| 3 |
|
upeu2lem.o |
|
| 4 |
|
upeu2lem.i |
|
| 5 |
|
upeu2lem.c |
|
| 6 |
|
upeu2lem.x |
|
| 7 |
|
upeu2lem.y |
|
| 8 |
|
upeu2lem.z |
|
| 9 |
|
upeu2lem.f |
|
| 10 |
|
upeu2lem.g |
|
| 11 |
1 2 4 5 7 6
|
isohom |
|
| 12 |
|
eqid |
|
| 13 |
1 12 5 6 7 4
|
invf |
|
| 14 |
13 9
|
ffvelcdmd |
|
| 15 |
11 14
|
sseldd |
|
| 16 |
1 2 3 5 7 6 8 15 10
|
catcocl |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
adantl |
|
| 19 |
5
|
adantr |
|
| 20 |
7
|
adantr |
|
| 21 |
6
|
adantr |
|
| 22 |
15
|
adantr |
|
| 23 |
1 2 4 5 6 7
|
isohom |
|
| 24 |
23 9
|
sseldd |
|
| 25 |
24
|
adantr |
|
| 26 |
8
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
1 2 3 19 20 21 20 22 25 26 27
|
catass |
|
| 29 |
9
|
adantr |
|
| 30 |
|
eqid |
|
| 31 |
3
|
oveqi |
|
| 32 |
1 4 12 19 21 20 29 30 31
|
isocoinvid |
|
| 33 |
32
|
oveq2d |
|
| 34 |
1 2 30 19 20 3 26 27
|
catrid |
|
| 35 |
28 33 34
|
3eqtrd |
|
| 36 |
35
|
adantr |
|
| 37 |
18 36
|
eqtr2d |
|
| 38 |
|
oveq1 |
|
| 39 |
38
|
adantl |
|
| 40 |
10
|
adantr |
|
| 41 |
1 2 3 19 21 20 21 25 22 26 40
|
catass |
|
| 42 |
3
|
oveqi |
|
| 43 |
1 4 12 19 21 20 29 30 42
|
invcoisoid |
|
| 44 |
43
|
oveq2d |
|
| 45 |
1 2 30 19 21 3 26 40
|
catrid |
|
| 46 |
41 44 45
|
3eqtrd |
|
| 47 |
46
|
adantr |
|
| 48 |
39 47
|
eqtr2d |
|
| 49 |
37 48
|
impbida |
|
| 50 |
49
|
ralrimiva |
|
| 51 |
|
reu6i |
|
| 52 |
16 50 51
|
syl2anc |
|