Metamath Proof Explorer


Theorem upgrimtrlslem2

Description: Lemma 2 for upgrimtrls . (Contributed by AV, 29-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimtrls.t φ F Trails G P
Assertion upgrimtrlslem2 φ x dom F y dom F J -1 N I F x = J -1 N I F y x = y

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimtrls.t φ F Trails G P
8 2 uspgrf1oedg H USHGraph J : dom J 1-1 onto Edg H
9 f1of1 J : dom J 1-1 onto Edg H J : dom J 1-1 Edg H
10 4 8 9 3syl φ J : dom J 1-1 Edg H
11 1 2 3 4 5 6 7 upgrimtrlslem1 φ x dom F N I F x Edg H
12 edgval Edg H = ran iEdg H
13 2 eqcomi iEdg H = J
14 13 rneqi ran iEdg H = ran J
15 12 14 eqtri Edg H = ran J
16 11 15 eleqtrdi φ x dom F N I F x ran J
17 1 2 3 4 5 6 7 upgrimtrlslem1 φ y dom F N I F y Edg H
18 17 15 eleqtrdi φ y dom F N I F y ran J
19 16 18 anim12dan φ x dom F y dom F N I F x ran J N I F y ran J
20 f1ocnvfvrneq J : dom J 1-1 Edg H N I F x ran J N I F y ran J J -1 N I F x = J -1 N I F y N I F x = N I F y
21 10 19 20 syl2an2r φ x dom F y dom F J -1 N I F x = J -1 N I F y N I F x = N I F y
22 eqid Vtx G = Vtx G
23 eqid Vtx H = Vtx H
24 22 23 grimf1o N G GraphIso H N : Vtx G 1-1 onto Vtx H
25 f1of1 N : Vtx G 1-1 onto Vtx H N : Vtx G 1-1 Vtx H
26 5 24 25 3syl φ N : Vtx G 1-1 Vtx H
27 uspgruhgr G USHGraph G UHGraph
28 3 27 syl φ G UHGraph
29 trliswlk F Trails G P F Walks G P
30 1 wlkf F Walks G P F Word dom I
31 wrdf F Word dom I F : 0 ..^ F dom I
32 id F : 0 ..^ F dom I F : 0 ..^ F dom I
33 32 ffdmd F : 0 ..^ F dom I F : dom F dom I
34 30 31 33 3syl F Walks G P F : dom F dom I
35 7 29 34 3syl φ F : dom F dom I
36 35 ffvelcdmda φ x dom F F x dom I
37 22 1 uhgrss G UHGraph F x dom I I F x Vtx G
38 28 36 37 syl2an2r φ x dom F I F x Vtx G
39 35 ffvelcdmda φ y dom F F y dom I
40 22 1 uhgrss G UHGraph F y dom I I F y Vtx G
41 28 39 40 syl2an2r φ y dom F I F y Vtx G
42 38 41 anim12dan φ x dom F y dom F I F x Vtx G I F y Vtx G
43 f1imaeq N : Vtx G 1-1 Vtx H I F x Vtx G I F y Vtx G N I F x = N I F y I F x = I F y
44 26 42 43 syl2an2r φ x dom F y dom F N I F x = N I F y I F x = I F y
45 1 uspgrf1oedg G USHGraph I : dom I 1-1 onto Edg G
46 f1of1 I : dom I 1-1 onto Edg G I : dom I 1-1 Edg G
47 3 45 46 3syl φ I : dom I 1-1 Edg G
48 1 trlf1 F Trails G P F : 0 ..^ F 1-1 dom I
49 f1f F : 0 ..^ F 1-1 dom I F : 0 ..^ F dom I
50 fdm F : 0 ..^ F dom I dom F = 0 ..^ F
51 50 eqcomd F : 0 ..^ F dom I 0 ..^ F = dom F
52 49 51 syl F : 0 ..^ F 1-1 dom I 0 ..^ F = dom F
53 f1eq2 0 ..^ F = dom F F : 0 ..^ F 1-1 dom I F : dom F 1-1 dom I
54 53 biimpcd F : 0 ..^ F 1-1 dom I 0 ..^ F = dom F F : dom F 1-1 dom I
55 52 54 mpd F : 0 ..^ F 1-1 dom I F : dom F 1-1 dom I
56 7 48 55 3syl φ F : dom F 1-1 dom I
57 47 56 jca φ I : dom I 1-1 Edg G F : dom F 1-1 dom I
58 f1cofveqaeq I : dom I 1-1 Edg G F : dom F 1-1 dom I x dom F y dom F I F x = I F y x = y
59 57 58 sylan φ x dom F y dom F I F x = I F y x = y
60 44 59 sylbid φ x dom F y dom F N I F x = N I F y x = y
61 21 60 syld φ x dom F y dom F J -1 N I F x = J -1 N I F y x = y