Metamath Proof Explorer


Theorem upwlksfval

Description: The set of simple walks (in an undirected graph). (Contributed by Alexander van der Vekens, 19-Oct-2017) (Revised by AV, 28-Dec-2020)

Ref Expression
Hypotheses upwlksfval.v V=VtxG
upwlksfval.i I=iEdgG
Assertion upwlksfval GWUPWalksG=fp|fWorddomIp:0fVk0..^fIfk=pkpk+1

Proof

Step Hyp Ref Expression
1 upwlksfval.v V=VtxG
2 upwlksfval.i I=iEdgG
3 df-upwlks UPWalks=gVfp|fWorddomiEdggp:0fVtxgk0..^fiEdggfk=pkpk+1
4 fveq2 g=GiEdgg=iEdgG
5 4 2 eqtr4di g=GiEdgg=I
6 5 dmeqd g=GdomiEdgg=domI
7 wrdeq domiEdgg=domIWorddomiEdgg=WorddomI
8 6 7 syl g=GWorddomiEdgg=WorddomI
9 8 eleq2d g=GfWorddomiEdggfWorddomI
10 fveq2 g=GVtxg=VtxG
11 10 1 eqtr4di g=GVtxg=V
12 11 feq3d g=Gp:0fVtxgp:0fV
13 5 fveq1d g=GiEdggfk=Ifk
14 13 eqeq1d g=GiEdggfk=pkpk+1Ifk=pkpk+1
15 14 ralbidv g=Gk0..^fiEdggfk=pkpk+1k0..^fIfk=pkpk+1
16 9 12 15 3anbi123d g=GfWorddomiEdggp:0fVtxgk0..^fiEdggfk=pkpk+1fWorddomIp:0fVk0..^fIfk=pkpk+1
17 16 opabbidv g=Gfp|fWorddomiEdggp:0fVtxgk0..^fiEdggfk=pkpk+1=fp|fWorddomIp:0fVk0..^fIfk=pkpk+1
18 elex GWGV
19 3anass fWorddomIp:0fVk0..^fIfk=pkpk+1fWorddomIp:0fVk0..^fIfk=pkpk+1
20 19 opabbii fp|fWorddomIp:0fVk0..^fIfk=pkpk+1=fp|fWorddomIp:0fVk0..^fIfk=pkpk+1
21 2 fvexi IV
22 21 dmex domIV
23 wrdexg domIVWorddomIV
24 22 23 mp1i GWWorddomIV
25 ovex 0fV
26 1 fvexi VV
27 26 a1i GWfWorddomIVV
28 mapex 0fVVVp|p:0fVV
29 25 27 28 sylancr GWfWorddomIp|p:0fVV
30 simpl p:0fVk0..^fIfk=pkpk+1p:0fV
31 30 ss2abi p|p:0fVk0..^fIfk=pkpk+1p|p:0fV
32 31 a1i GWfWorddomIp|p:0fVk0..^fIfk=pkpk+1p|p:0fV
33 29 32 ssexd GWfWorddomIp|p:0fVk0..^fIfk=pkpk+1V
34 24 33 opabex3d GWfp|fWorddomIp:0fVk0..^fIfk=pkpk+1V
35 20 34 eqeltrid GWfp|fWorddomIp:0fVk0..^fIfk=pkpk+1V
36 3 17 18 35 fvmptd3 GWUPWalksG=fp|fWorddomIp:0fVk0..^fIfk=pkpk+1