Description: A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 13-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fusgrmaxsize.v | |
|
fusgrmaxsize.e | |
||
usgrsscusgra.h | |
||
usgrsscusgra.f | |
||
Assertion | usgredgsscusgredg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrmaxsize.v | |
|
2 | fusgrmaxsize.e | |
|
3 | usgrsscusgra.h | |
|
4 | usgrsscusgra.f | |
|
5 | 1 2 | usgredg | |
6 | 3 4 | iscusgredg | |
7 | sneq | |
|
8 | 7 | difeq2d | |
9 | preq2 | |
|
10 | 9 | eleq1d | |
11 | 8 10 | raleqbidv | |
12 | 11 | rspcv | |
13 | simpl | |
|
14 | 13 | necomd | |
15 | 14 | anim2i | |
16 | eldifsn | |
|
17 | 15 16 | sylibr | |
18 | preq1 | |
|
19 | 18 | eleq1d | |
20 | 19 | rspcv | |
21 | 17 20 | syl | |
22 | prcom | |
|
23 | 22 | eqeq2i | |
24 | eqcom | |
|
25 | 23 24 | sylbb | |
26 | 25 | eleq1d | |
27 | 26 | biimpd | |
28 | 27 | ad2antll | |
29 | 21 28 | syld | |
30 | 12 29 | syl9 | |
31 | 30 | impl | |
32 | 31 | adantld | |
33 | 6 32 | biimtrid | |
34 | 33 | ex | |
35 | 34 | rexlimivv | |
36 | 5 35 | syl | |
37 | 36 | impancom | |
38 | 37 | ssrdv | |