Metamath Proof Explorer


Theorem usgredgsscusgredg

Description: A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 13-Nov-2020)

Ref Expression
Hypotheses fusgrmaxsize.v V=VtxG
fusgrmaxsize.e E=EdgG
usgrsscusgra.h V=VtxH
usgrsscusgra.f F=EdgH
Assertion usgredgsscusgredg GUSGraphHComplUSGraphEF

Proof

Step Hyp Ref Expression
1 fusgrmaxsize.v V=VtxG
2 fusgrmaxsize.e E=EdgG
3 usgrsscusgra.h V=VtxH
4 usgrsscusgra.f F=EdgH
5 1 2 usgredg GUSGrapheEaVbVabe=ab
6 3 4 iscusgredg HComplUSGraphHUSGraphkVnVknkF
7 sneq k=ak=a
8 7 difeq2d k=aVk=Va
9 preq2 k=ank=na
10 9 eleq1d k=ankFnaF
11 8 10 raleqbidv k=anVknkFnVanaF
12 11 rspcv aVkVnVknkFnVanaF
13 simpl abe=abab
14 13 necomd abe=abba
15 14 anim2i bVabe=abbVba
16 eldifsn bVabVba
17 15 16 sylibr bVabe=abbVa
18 preq1 n=bna=ba
19 18 eleq1d n=bnaFbaF
20 19 rspcv bVanVanaFbaF
21 17 20 syl bVabe=abnVanaFbaF
22 prcom ab=ba
23 22 eqeq2i e=abe=ba
24 eqcom e=baba=e
25 23 24 sylbb e=abba=e
26 25 eleq1d e=abbaFeF
27 26 biimpd e=abbaFeF
28 27 ad2antll bVabe=abbaFeF
29 21 28 syld bVabe=abnVanaFeF
30 12 29 syl9 aVbVabe=abkVnVknkFeF
31 30 impl aVbVabe=abkVnVknkFeF
32 31 adantld aVbVabe=abHUSGraphkVnVknkFeF
33 6 32 biimtrid aVbVabe=abHComplUSGrapheF
34 33 ex aVbVabe=abHComplUSGrapheF
35 34 rexlimivv aVbVabe=abHComplUSGrapheF
36 5 35 syl GUSGrapheEHComplUSGrapheF
37 36 impancom GUSGraphHComplUSGrapheEeF
38 37 ssrdv GUSGraphHComplUSGraphEF