Metamath Proof Explorer


Theorem ustuqtop

Description: For a given uniform structure U on a set X , there is a unique topology j such that the set ran ( v e. U |-> ( v " { p } ) ) is the filter of the neighborhoods of p for that topology. Proposition 1 of BourbakiTop1 p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018)

Ref Expression
Hypothesis utopustuq.1 N=pXranvUvp
Assertion ustuqtop UUnifOnX∃!jTopOnXpXNp=neijp

Proof

Step Hyp Ref Expression
1 utopustuq.1 N=pXranvUvp
2 fveq2 p=rNp=Nr
3 2 eleq2d p=rcNpcNr
4 3 cbvralvw pccNprccNr
5 eleq1w c=acNpaNp
6 5 raleqbi1dv c=apccNppaaNp
7 4 6 bitr3id c=arccNrpaaNp
8 7 cbvrabv c𝒫X|rccNr=a𝒫X|paaNp
9 1 ustuqtop0 UUnifOnXN:X𝒫𝒫X
10 1 ustuqtop1 UUnifOnXpXabbXaNpbNp
11 1 ustuqtop2 UUnifOnXpXfiNpNp
12 1 ustuqtop3 UUnifOnXpXaNppa
13 1 ustuqtop4 UUnifOnXpXaNpbNpxbaNx
14 1 ustuqtop5 UUnifOnXpXXNp
15 8 9 10 11 12 13 14 neiptopreu UUnifOnX∃!jTopOnXN=pXneijp
16 9 feqmptd UUnifOnXN=pXNp
17 16 eqeq1d UUnifOnXN=pXneijppXNp=pXneijp
18 fvex NpV
19 18 rgenw pXNpV
20 mpteqb pXNpVpXNp=pXneijppXNp=neijp
21 19 20 ax-mp pXNp=pXneijppXNp=neijp
22 17 21 bitrdi UUnifOnXN=pXneijppXNp=neijp
23 22 reubidv UUnifOnX∃!jTopOnXN=pXneijp∃!jTopOnXpXNp=neijp
24 15 23 mpbid UUnifOnX∃!jTopOnXpXNp=neijp