Step |
Hyp |
Ref |
Expression |
1 |
|
utopustuq.1 |
|
2 |
|
simp-6l |
|
3 |
|
simp-7l |
|
4 |
|
simp-4r |
|
5 |
|
simplr |
|
6 |
|
ustincl |
|
7 |
3 4 5 6
|
syl3anc |
|
8 |
|
ineq12 |
|
9 |
|
inimasn |
|
10 |
9
|
elv |
|
11 |
8 10
|
eqtr4di |
|
12 |
11
|
ad4ant24 |
|
13 |
|
imaeq1 |
|
14 |
13
|
rspceeqv |
|
15 |
7 12 14
|
syl2anc |
|
16 |
|
vex |
|
17 |
16
|
inex1 |
|
18 |
1
|
ustuqtoplem |
|
19 |
17 18
|
mpan2 |
|
20 |
19
|
biimpar |
|
21 |
2 15 20
|
syl2anc |
|
22 |
1
|
ustuqtoplem |
|
23 |
22
|
elvd |
|
24 |
23
|
biimpa |
|
25 |
24
|
ad5ant13 |
|
26 |
21 25
|
r19.29a |
|
27 |
1
|
ustuqtoplem |
|
28 |
27
|
elvd |
|
29 |
28
|
biimpa |
|
30 |
29
|
adantr |
|
31 |
26 30
|
r19.29a |
|
32 |
31
|
ralrimiva |
|
33 |
32
|
ralrimiva |
|
34 |
|
fvex |
|
35 |
|
inficl |
|
36 |
34 35
|
ax-mp |
|
37 |
33 36
|
sylib |
|
38 |
|
eqimss |
|
39 |
37 38
|
syl |
|