| Step |
Hyp |
Ref |
Expression |
| 1 |
|
utopustuq.1 |
|
| 2 |
|
simp-6l |
|
| 3 |
|
simp-7l |
|
| 4 |
|
simp-4r |
|
| 5 |
|
simplr |
|
| 6 |
|
ustincl |
|
| 7 |
3 4 5 6
|
syl3anc |
|
| 8 |
|
ineq12 |
|
| 9 |
|
inimasn |
|
| 10 |
9
|
elv |
|
| 11 |
8 10
|
eqtr4di |
|
| 12 |
11
|
ad4ant24 |
|
| 13 |
|
imaeq1 |
|
| 14 |
13
|
rspceeqv |
|
| 15 |
7 12 14
|
syl2anc |
|
| 16 |
|
vex |
|
| 17 |
16
|
inex1 |
|
| 18 |
1
|
ustuqtoplem |
|
| 19 |
17 18
|
mpan2 |
|
| 20 |
19
|
biimpar |
|
| 21 |
2 15 20
|
syl2anc |
|
| 22 |
1
|
ustuqtoplem |
|
| 23 |
22
|
elvd |
|
| 24 |
23
|
biimpa |
|
| 25 |
24
|
ad5ant13 |
|
| 26 |
21 25
|
r19.29a |
|
| 27 |
1
|
ustuqtoplem |
|
| 28 |
27
|
elvd |
|
| 29 |
28
|
biimpa |
|
| 30 |
29
|
adantr |
|
| 31 |
26 30
|
r19.29a |
|
| 32 |
31
|
ralrimiva |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
|
fvex |
|
| 35 |
|
inficl |
|
| 36 |
34 35
|
ax-mp |
|
| 37 |
33 36
|
sylib |
|
| 38 |
|
eqimss |
|
| 39 |
37 38
|
syl |
|