Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | utopustuq.1 | |
|
Assertion | ustuqtop2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utopustuq.1 | |
|
2 | simp-6l | |
|
3 | simp-7l | |
|
4 | simp-4r | |
|
5 | simplr | |
|
6 | ustincl | |
|
7 | 3 4 5 6 | syl3anc | |
8 | ineq12 | |
|
9 | inimasn | |
|
10 | 9 | elv | |
11 | 8 10 | eqtr4di | |
12 | 11 | ad4ant24 | |
13 | imaeq1 | |
|
14 | 13 | rspceeqv | |
15 | 7 12 14 | syl2anc | |
16 | vex | |
|
17 | 16 | inex1 | |
18 | 1 | ustuqtoplem | |
19 | 17 18 | mpan2 | |
20 | 19 | biimpar | |
21 | 2 15 20 | syl2anc | |
22 | 1 | ustuqtoplem | |
23 | 22 | elvd | |
24 | 23 | biimpa | |
25 | 24 | ad5ant13 | |
26 | 21 25 | r19.29a | |
27 | 1 | ustuqtoplem | |
28 | 27 | elvd | |
29 | 28 | biimpa | |
30 | 29 | adantr | |
31 | 26 30 | r19.29a | |
32 | 31 | ralrimiva | |
33 | 32 | ralrimiva | |
34 | fvex | |
|
35 | inficl | |
|
36 | 34 35 | ax-mp | |
37 | 33 36 | sylib | |
38 | eqimss | |
|
39 | 37 38 | syl | |