| Step | Hyp | Ref | Expression | 
						
							| 1 |  | utopustuq.1 |  | 
						
							| 2 |  | simp-6l |  | 
						
							| 3 |  | simp-7l |  | 
						
							| 4 |  | simp-4r |  | 
						
							| 5 |  | simplr |  | 
						
							| 6 |  | ustincl |  | 
						
							| 7 | 3 4 5 6 | syl3anc |  | 
						
							| 8 |  | ineq12 |  | 
						
							| 9 |  | inimasn |  | 
						
							| 10 | 9 | elv |  | 
						
							| 11 | 8 10 | eqtr4di |  | 
						
							| 12 | 11 | ad4ant24 |  | 
						
							| 13 |  | imaeq1 |  | 
						
							| 14 | 13 | rspceeqv |  | 
						
							| 15 | 7 12 14 | syl2anc |  | 
						
							| 16 |  | vex |  | 
						
							| 17 | 16 | inex1 |  | 
						
							| 18 | 1 | ustuqtoplem |  | 
						
							| 19 | 17 18 | mpan2 |  | 
						
							| 20 | 19 | biimpar |  | 
						
							| 21 | 2 15 20 | syl2anc |  | 
						
							| 22 | 1 | ustuqtoplem |  | 
						
							| 23 | 22 | elvd |  | 
						
							| 24 | 23 | biimpa |  | 
						
							| 25 | 24 | ad5ant13 |  | 
						
							| 26 | 21 25 | r19.29a |  | 
						
							| 27 | 1 | ustuqtoplem |  | 
						
							| 28 | 27 | elvd |  | 
						
							| 29 | 28 | biimpa |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 26 30 | r19.29a |  | 
						
							| 32 | 31 | ralrimiva |  | 
						
							| 33 | 32 | ralrimiva |  | 
						
							| 34 |  | fvex |  | 
						
							| 35 |  | inficl |  | 
						
							| 36 | 34 35 | ax-mp |  | 
						
							| 37 | 33 36 | sylib |  | 
						
							| 38 |  | eqimss |  | 
						
							| 39 | 37 38 | syl |  |