Metamath Proof Explorer


Theorem vdwnnlem2

Description: Lemma for vdwnn . The set of all "bad" k for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014)

Ref Expression
Hypotheses vdwnn.1 φRFin
vdwnn.2 φF:R
vdwnn.3 S=k|¬adm0k1a+mdF-1c
Assertion vdwnnlem2 φBAASBS

Proof

Step Hyp Ref Expression
1 vdwnn.1 φRFin
2 vdwnn.2 φF:R
3 vdwnn.3 S=k|¬adm0k1a+mdF-1c
4 eluzel2 BAA
5 peano2zm AA1
6 4 5 syl BAA1
7 id BABA
8 4 zcnd BAA
9 ax-1cn 1
10 npcan A1A-1+1=A
11 8 9 10 sylancl BAA-1+1=A
12 11 fveq2d BAA-1+1=A
13 7 12 eleqtrrd BABA-1+1
14 eluzp1m1 A1BA-1+1B1A1
15 6 13 14 syl2anc BAB1A1
16 15 ad2antlr φBAAB1A1
17 fzss2 B1A10A10B1
18 ssralv 0A10B1m0B1a+mdF-1cm0A1a+mdF-1c
19 16 17 18 3syl φBAAm0B1a+mdF-1cm0A1a+mdF-1c
20 19 reximdv φBAAdm0B1a+mdF-1cdm0A1a+mdF-1c
21 20 reximdv φBAAadm0B1a+mdF-1cadm0A1a+mdF-1c
22 21 con3d φBAA¬adm0A1a+mdF-1c¬adm0B1a+mdF-1c
23 id AA
24 simpr φBABA
25 eluznn ABAB
26 23 24 25 syl2anr φBAAB
27 22 26 jctild φBAA¬adm0A1a+mdF-1cB¬adm0B1a+mdF-1c
28 27 expimpd φBAA¬adm0A1a+mdF-1cB¬adm0B1a+mdF-1c
29 oveq1 k=Ak1=A1
30 29 oveq2d k=A0k1=0A1
31 30 raleqdv k=Am0k1a+mdF-1cm0A1a+mdF-1c
32 31 2rexbidv k=Aadm0k1a+mdF-1cadm0A1a+mdF-1c
33 32 notbid k=A¬adm0k1a+mdF-1c¬adm0A1a+mdF-1c
34 33 3 elrab2 ASA¬adm0A1a+mdF-1c
35 oveq1 k=Bk1=B1
36 35 oveq2d k=B0k1=0B1
37 36 raleqdv k=Bm0k1a+mdF-1cm0B1a+mdF-1c
38 37 2rexbidv k=Badm0k1a+mdF-1cadm0B1a+mdF-1c
39 38 notbid k=B¬adm0k1a+mdF-1c¬adm0B1a+mdF-1c
40 39 3 elrab2 BSB¬adm0B1a+mdF-1c
41 28 34 40 3imtr4g φBAASBS