Description: Lemma for vdwnn . The set of all "bad" k for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vdwnn.1 | |
|
vdwnn.2 | |
||
vdwnn.3 | |
||
Assertion | vdwnnlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdwnn.1 | |
|
2 | vdwnn.2 | |
|
3 | vdwnn.3 | |
|
4 | eluzel2 | |
|
5 | peano2zm | |
|
6 | 4 5 | syl | |
7 | id | |
|
8 | 4 | zcnd | |
9 | ax-1cn | |
|
10 | npcan | |
|
11 | 8 9 10 | sylancl | |
12 | 11 | fveq2d | |
13 | 7 12 | eleqtrrd | |
14 | eluzp1m1 | |
|
15 | 6 13 14 | syl2anc | |
16 | 15 | ad2antlr | |
17 | fzss2 | |
|
18 | ssralv | |
|
19 | 16 17 18 | 3syl | |
20 | 19 | reximdv | |
21 | 20 | reximdv | |
22 | 21 | con3d | |
23 | id | |
|
24 | simpr | |
|
25 | eluznn | |
|
26 | 23 24 25 | syl2anr | |
27 | 22 26 | jctild | |
28 | 27 | expimpd | |
29 | oveq1 | |
|
30 | 29 | oveq2d | |
31 | 30 | raleqdv | |
32 | 31 | 2rexbidv | |
33 | 32 | notbid | |
34 | 33 3 | elrab2 | |
35 | oveq1 | |
|
36 | 35 | oveq2d | |
37 | 36 | raleqdv | |
38 | 37 | 2rexbidv | |
39 | 38 | notbid | |
40 | 39 3 | elrab2 | |
41 | 28 34 40 | 3imtr4g | |