Metamath Proof Explorer


Theorem vhmcls

Description: All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D=mDVT
mclsval.e E=mExT
mclsval.c C=mClsT
mclsval.1 φTmFS
mclsval.2 φKD
mclsval.3 φBE
ssmclslem.h H=mVHT
vhmcls.v V=mVRT
vhmcls.3 φXV
Assertion vhmcls φHXKCB

Proof

Step Hyp Ref Expression
1 mclsval.d D=mDVT
2 mclsval.e E=mExT
3 mclsval.c C=mClsT
4 mclsval.1 φTmFS
5 mclsval.2 φKD
6 mclsval.3 φBE
7 ssmclslem.h H=mVHT
8 vhmcls.v V=mVRT
9 vhmcls.3 φXV
10 1 2 3 4 5 6 7 ssmclslem φBranHKCB
11 10 unssbd φranHKCB
12 8 2 7 mvhf TmFSH:VE
13 ffn H:VEHFnV
14 4 12 13 3syl φHFnV
15 fnfvelrn HFnVXVHXranH
16 14 9 15 syl2anc φHXranH
17 11 16 sseldd φHXKCB