Metamath Proof Explorer


Theorem vonvolmbl2

Description: A subset X of the space of 1-dimensional Real numbers is Lebesgue measurable if and only if its projection Y on the Real numbers is Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses vonvolmbl2.f _ f Y
vonvolmbl2.a φ A V
vonvolmbl2.x φ X A
vonvolmbl2.y Y = f X ran f
Assertion vonvolmbl2 φ X dom voln A Y dom vol

Proof

Step Hyp Ref Expression
1 vonvolmbl2.f _ f Y
2 vonvolmbl2.a φ A V
3 vonvolmbl2.x φ X A
4 vonvolmbl2.y Y = f X ran f
5 1 2 3 4 ssmapsn φ X = Y A
6 5 eleq1d φ X dom voln A Y A dom voln A
7 3 adantr φ f X X A
8 simpr φ f X f X
9 7 8 sseldd φ f X f A
10 elmapi f A f : A
11 frn f : A ran f
12 9 10 11 3syl φ f X ran f
13 12 ralrimiva φ f X ran f
14 iunss f X ran f f X ran f
15 13 14 sylibr φ f X ran f
16 4 15 eqsstrid φ Y
17 2 16 vonvolmbl φ Y A dom voln A Y dom vol
18 6 17 bitrd φ X dom voln A Y dom vol