Metamath Proof Explorer


Theorem wemapso

Description: Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Mario Carneiro, 8-Feb-2015) (Revised by AV, 21-Jul-2024)

Ref Expression
Hypothesis wemapso.t T=xy|zAxzSyzwAwRzxw=yw
Assertion wemapso RWeASOrBTOrBA

Proof

Step Hyp Ref Expression
1 wemapso.t T=xy|zAxzSyzwAwRzxw=yw
2 ssid BABA
3 weso RWeAROrA
4 3 adantr RWeASOrBROrA
5 simpr RWeASOrBSOrB
6 vex aV
7 6 difexi abV
8 7 dmex domabV
9 8 a1i RWeASOrBaBAbBAabdomabV
10 wefr RWeARFrA
11 10 ad2antrr RWeASOrBaBAbBAabRFrA
12 difss aba
13 dmss abadomabdoma
14 12 13 ax-mp domabdoma
15 simprll RWeASOrBaBAbBAabaBA
16 elmapi aBAa:AB
17 15 16 syl RWeASOrBaBAbBAaba:AB
18 14 17 fssdm RWeASOrBaBAbBAabdomabA
19 simprr RWeASOrBaBAbBAabab
20 17 ffnd RWeASOrBaBAbBAabaFnA
21 simprlr RWeASOrBaBAbBAabbBA
22 elmapi bBAb:AB
23 21 22 syl RWeASOrBaBAbBAabb:AB
24 23 ffnd RWeASOrBaBAbBAabbFnA
25 fndmdifeq0 aFnAbFnAdomab=a=b
26 20 24 25 syl2anc RWeASOrBaBAbBAabdomab=a=b
27 26 necon3bid RWeASOrBaBAbBAabdomabab
28 19 27 mpbird RWeASOrBaBAbBAabdomab
29 fri domabVRFrAdomabAdomabcdomabddomab¬dRc
30 9 11 18 28 29 syl22anc RWeASOrBaBAbBAabcdomabddomab¬dRc
31 1 2 4 5 30 wemapsolem RWeASOrBTOrBA