Metamath Proof Explorer


Theorem wfr3g

Description: Functions defined by well-ordered recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Assertion wfr3g RWeARSeAFFnAyAFy=HFPredRAyGFnAyAGy=HGPredRAyF=G

Proof

Step Hyp Ref Expression
1 r19.26 yAFy=HFPredRAyGy=HGPredRAyyAFy=HFPredRAyyAGy=HGPredRAy
2 fveq2 z=wFz=Fw
3 fveq2 z=wGz=Gw
4 2 3 eqeq12d z=wFz=GzFw=Gw
5 4 imbi2d z=wFFnAGFnAyAFy=HFPredRAyGy=HGPredRAyFz=GzFFnAGFnAyAFy=HFPredRAyGy=HGPredRAyFw=Gw
6 ra4v wPredRAzFFnAGFnAyAFy=HFPredRAyGy=HGPredRAyFw=GwFFnAGFnAyAFy=HFPredRAyGy=HGPredRAywPredRAzFw=Gw
7 fveq2 y=zFy=Fz
8 predeq3 y=zPredRAy=PredRAz
9 8 reseq2d y=zFPredRAy=FPredRAz
10 9 fveq2d y=zHFPredRAy=HFPredRAz
11 7 10 eqeq12d y=zFy=HFPredRAyFz=HFPredRAz
12 fveq2 y=zGy=Gz
13 8 reseq2d y=zGPredRAy=GPredRAz
14 13 fveq2d y=zHGPredRAy=HGPredRAz
15 12 14 eqeq12d y=zGy=HGPredRAyGz=HGPredRAz
16 11 15 anbi12d y=zFy=HFPredRAyGy=HGPredRAyFz=HFPredRAzGz=HGPredRAz
17 16 rspcva zAyAFy=HFPredRAyGy=HGPredRAyFz=HFPredRAzGz=HGPredRAz
18 eqtr3 Fz=HFPredRAzHGPredRAz=HFPredRAzFz=HGPredRAz
19 18 ancoms HGPredRAz=HFPredRAzFz=HFPredRAzFz=HGPredRAz
20 eqtr3 Fz=HGPredRAzGz=HGPredRAzFz=Gz
21 20 ex Fz=HGPredRAzGz=HGPredRAzFz=Gz
22 19 21 syl HGPredRAz=HFPredRAzFz=HFPredRAzGz=HGPredRAzFz=Gz
23 22 expimpd HGPredRAz=HFPredRAzFz=HFPredRAzGz=HGPredRAzFz=Gz
24 predss PredRAzA
25 fvreseq FFnAGFnAPredRAzAFPredRAz=GPredRAzwPredRAzFw=Gw
26 24 25 mpan2 FFnAGFnAFPredRAz=GPredRAzwPredRAzFw=Gw
27 26 biimpar FFnAGFnAwPredRAzFw=GwFPredRAz=GPredRAz
28 27 eqcomd FFnAGFnAwPredRAzFw=GwGPredRAz=FPredRAz
29 28 fveq2d FFnAGFnAwPredRAzFw=GwHGPredRAz=HFPredRAz
30 23 29 syl11 Fz=HFPredRAzGz=HGPredRAzFFnAGFnAwPredRAzFw=GwFz=Gz
31 30 expd Fz=HFPredRAzGz=HGPredRAzFFnAGFnAwPredRAzFw=GwFz=Gz
32 17 31 syl zAyAFy=HFPredRAyGy=HGPredRAyFFnAGFnAwPredRAzFw=GwFz=Gz
33 32 ex zAyAFy=HFPredRAyGy=HGPredRAyFFnAGFnAwPredRAzFw=GwFz=Gz
34 33 impcomd zAFFnAGFnAyAFy=HFPredRAyGy=HGPredRAywPredRAzFw=GwFz=Gz
35 34 a2d zAFFnAGFnAyAFy=HFPredRAyGy=HGPredRAywPredRAzFw=GwFFnAGFnAyAFy=HFPredRAyGy=HGPredRAyFz=Gz
36 6 35 syl5 zAwPredRAzFFnAGFnAyAFy=HFPredRAyGy=HGPredRAyFw=GwFFnAGFnAyAFy=HFPredRAyGy=HGPredRAyFz=Gz
37 5 36 wfis2g RWeARSeAzAFFnAGFnAyAFy=HFPredRAyGy=HGPredRAyFz=Gz
38 r19.21v zAFFnAGFnAyAFy=HFPredRAyGy=HGPredRAyFz=GzFFnAGFnAyAFy=HFPredRAyGy=HGPredRAyzAFz=Gz
39 37 38 sylib RWeARSeAFFnAGFnAyAFy=HFPredRAyGy=HGPredRAyzAFz=Gz
40 39 com12 FFnAGFnAyAFy=HFPredRAyGy=HGPredRAyRWeARSeAzAFz=Gz
41 1 40 sylan2br FFnAGFnAyAFy=HFPredRAyyAGy=HGPredRAyRWeARSeAzAFz=Gz
42 41 an4s FFnAyAFy=HFPredRAyGFnAyAGy=HGPredRAyRWeARSeAzAFz=Gz
43 42 com12 RWeARSeAFFnAyAFy=HFPredRAyGFnAyAGy=HGPredRAyzAFz=Gz
44 43 3impib RWeARSeAFFnAyAFy=HFPredRAyGFnAyAGy=HGPredRAyzAFz=Gz
45 eqid A=A
46 44 45 jctil RWeARSeAFFnAyAFy=HFPredRAyGFnAyAGy=HGPredRAyA=AzAFz=Gz
47 eqfnfv2 FFnAGFnAF=GA=AzAFz=Gz
48 47 ad2ant2r FFnAyAFy=HFPredRAyGFnAyAGy=HGPredRAyF=GA=AzAFz=Gz
49 48 3adant1 RWeARSeAFFnAyAFy=HFPredRAyGFnAyAGy=HGPredRAyF=GA=AzAFz=Gz
50 46 49 mpbird RWeARSeAFFnAyAFy=HFPredRAyGFnAyAGy=HGPredRAyF=G