Description: Functions defined by well-ordered recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | wfr3g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 | |
|
2 | fveq2 | |
|
3 | fveq2 | |
|
4 | 2 3 | eqeq12d | |
5 | 4 | imbi2d | |
6 | ra4v | |
|
7 | fveq2 | |
|
8 | predeq3 | |
|
9 | 8 | reseq2d | |
10 | 9 | fveq2d | |
11 | 7 10 | eqeq12d | |
12 | fveq2 | |
|
13 | 8 | reseq2d | |
14 | 13 | fveq2d | |
15 | 12 14 | eqeq12d | |
16 | 11 15 | anbi12d | |
17 | 16 | rspcva | |
18 | eqtr3 | |
|
19 | 18 | ancoms | |
20 | eqtr3 | |
|
21 | 20 | ex | |
22 | 19 21 | syl | |
23 | 22 | expimpd | |
24 | predss | |
|
25 | fvreseq | |
|
26 | 24 25 | mpan2 | |
27 | 26 | biimpar | |
28 | 27 | eqcomd | |
29 | 28 | fveq2d | |
30 | 23 29 | syl11 | |
31 | 30 | expd | |
32 | 17 31 | syl | |
33 | 32 | ex | |
34 | 33 | impcomd | |
35 | 34 | a2d | |
36 | 6 35 | syl5 | |
37 | 5 36 | wfis2g | |
38 | r19.21v | |
|
39 | 37 38 | sylib | |
40 | 39 | com12 | |
41 | 1 40 | sylan2br | |
42 | 41 | an4s | |
43 | 42 | com12 | |
44 | 43 | 3impib | |
45 | eqid | |
|
46 | 44 45 | jctil | |
47 | eqfnfv2 | |
|
48 | 47 | ad2ant2r | |
49 | 48 | 3adant1 | |
50 | 46 49 | mpbird | |