Metamath Proof Explorer


Theorem wlimeq12

Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Assertion wlimeq12 R=SA=BWLimRA=WLimSB

Proof

Step Hyp Ref Expression
1 simpr R=SA=BA=B
2 simpl R=SA=BR=S
3 1 1 2 infeq123d R=SA=BsupAAR=supBBS
4 3 neeq2d R=SA=BxsupAARxsupBBS
5 equid x=x
6 predeq123 R=SA=Bx=xPredRAx=PredSBx
7 5 6 mp3an3 R=SA=BPredRAx=PredSBx
8 7 1 2 supeq123d R=SA=BsupPredRAxAR=supPredSBxBS
9 8 eqeq2d R=SA=Bx=supPredRAxARx=supPredSBxBS
10 4 9 anbi12d R=SA=BxsupAARx=supPredRAxARxsupBBSx=supPredSBxBS
11 1 10 rabeqbidv R=SA=BxA|xsupAARx=supPredRAxAR=xB|xsupBBSx=supPredSBxBS
12 df-wlim WLimRA=xA|xsupAARx=supPredRAxAR
13 df-wlim WLimSB=xB|xsupBBSx=supPredSBxBS
14 11 12 13 3eqtr4g R=SA=BWLimRA=WLimSB