Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018) (Proof shortened by AV, 10-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wlimeq12 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | simpl | |
|
3 | 1 1 2 | infeq123d | |
4 | 3 | neeq2d | |
5 | equid | |
|
6 | predeq123 | |
|
7 | 5 6 | mp3an3 | |
8 | 7 1 2 | supeq123d | |
9 | 8 | eqeq2d | |
10 | 4 9 | anbi12d | |
11 | 1 10 | rabeqbidv | |
12 | df-wlim | |
|
13 | df-wlim | |
|
14 | 11 12 13 | 3eqtr4g | |