| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlklnwwlkln2lem.1 |
|
| 2 |
|
eqid |
|
| 3 |
2
|
wwlknbp |
|
| 4 |
|
iswwlksn |
|
| 5 |
4
|
adantr |
|
| 6 |
|
lencl |
|
| 7 |
6
|
nn0cnd |
|
| 8 |
7
|
adantl |
|
| 9 |
|
1cnd |
|
| 10 |
|
nn0cn |
|
| 11 |
10
|
adantr |
|
| 12 |
8 9 11
|
subadd2d |
|
| 13 |
|
eqcom |
|
| 14 |
12 13
|
bitr2di |
|
| 15 |
14
|
biimpcd |
|
| 16 |
15
|
adantl |
|
| 17 |
16
|
impcom |
|
| 18 |
1
|
com12 |
|
| 19 |
18
|
adantr |
|
| 20 |
19
|
adantl |
|
| 21 |
20
|
imp |
|
| 22 |
|
simpr |
|
| 23 |
|
wlklenvm1 |
|
| 24 |
22 23
|
jccir |
|
| 25 |
24
|
ex |
|
| 26 |
25
|
eximdv |
|
| 27 |
21 26
|
mpd |
|
| 28 |
|
eqeq2 |
|
| 29 |
28
|
anbi2d |
|
| 30 |
29
|
exbidv |
|
| 31 |
27 30
|
imbitrid |
|
| 32 |
31
|
expd |
|
| 33 |
17 32
|
mpcom |
|
| 34 |
33
|
ex |
|
| 35 |
5 34
|
sylbid |
|
| 36 |
35
|
3adant1 |
|
| 37 |
3 36
|
mpcom |
|
| 38 |
37
|
com12 |
|