Metamath Proof Explorer


Theorem wlklnwwlkln2lem

Description: Lemma for wlklnwwlkln2 and wlklnwwlklnupgr2 . Formerly part of proof for wlklnwwlkln2 . (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 12-Apr-2021)

Ref Expression
Hypothesis wlklnwwlkln2lem.1 φPWWalksGffWalksGP
Assertion wlklnwwlkln2lem φPNWWalksNGffWalksGPf=N

Proof

Step Hyp Ref Expression
1 wlklnwwlkln2lem.1 φPWWalksGffWalksGP
2 eqid VtxG=VtxG
3 2 wwlknbp PNWWalksNGGVN0PWordVtxG
4 iswwlksn N0PNWWalksNGPWWalksGP=N+1
5 4 adantr N0PWordVtxGPNWWalksNGPWWalksGP=N+1
6 lencl PWordVtxGP0
7 6 nn0cnd PWordVtxGP
8 7 adantl N0PWordVtxGP
9 1cnd N0PWordVtxG1
10 nn0cn N0N
11 10 adantr N0PWordVtxGN
12 8 9 11 subadd2d N0PWordVtxGP1=NN+1=P
13 eqcom N+1=PP=N+1
14 12 13 bitr2di N0PWordVtxGP=N+1P1=N
15 14 biimpcd P=N+1N0PWordVtxGP1=N
16 15 adantl PWWalksGP=N+1N0PWordVtxGP1=N
17 16 impcom N0PWordVtxGPWWalksGP=N+1P1=N
18 1 com12 PWWalksGφffWalksGP
19 18 adantr PWWalksGP=N+1φffWalksGP
20 19 adantl N0PWordVtxGPWWalksGP=N+1φffWalksGP
21 20 imp N0PWordVtxGPWWalksGP=N+1φffWalksGP
22 simpr N0PWordVtxGPWWalksGP=N+1φfWalksGPfWalksGP
23 wlklenvm1 fWalksGPf=P1
24 22 23 jccir N0PWordVtxGPWWalksGP=N+1φfWalksGPfWalksGPf=P1
25 24 ex N0PWordVtxGPWWalksGP=N+1φfWalksGPfWalksGPf=P1
26 25 eximdv N0PWordVtxGPWWalksGP=N+1φffWalksGPffWalksGPf=P1
27 21 26 mpd N0PWordVtxGPWWalksGP=N+1φffWalksGPf=P1
28 eqeq2 P1=Nf=P1f=N
29 28 anbi2d P1=NfWalksGPf=P1fWalksGPf=N
30 29 exbidv P1=NffWalksGPf=P1ffWalksGPf=N
31 27 30 imbitrid P1=NN0PWordVtxGPWWalksGP=N+1φffWalksGPf=N
32 31 expd P1=NN0PWordVtxGPWWalksGP=N+1φffWalksGPf=N
33 17 32 mpcom N0PWordVtxGPWWalksGP=N+1φffWalksGPf=N
34 33 ex N0PWordVtxGPWWalksGP=N+1φffWalksGPf=N
35 5 34 sylbid N0PWordVtxGPNWWalksNGφffWalksGPf=N
36 35 3adant1 GVN0PWordVtxGPNWWalksNGφffWalksGPf=N
37 3 36 mpcom PNWWalksNGφffWalksGPf=N
38 37 com12 φPNWWalksNGffWalksGPf=N