Description: Lemma for wlklnwwlkln2 and wlklnwwlklnupgr2 . Formerly part of proof for wlklnwwlkln2 . (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 12-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wlklnwwlkln2lem.1 | |
|
Assertion | wlklnwwlkln2lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlklnwwlkln2lem.1 | |
|
2 | eqid | |
|
3 | 2 | wwlknbp | |
4 | iswwlksn | |
|
5 | 4 | adantr | |
6 | lencl | |
|
7 | 6 | nn0cnd | |
8 | 7 | adantl | |
9 | 1cnd | |
|
10 | nn0cn | |
|
11 | 10 | adantr | |
12 | 8 9 11 | subadd2d | |
13 | eqcom | |
|
14 | 12 13 | bitr2di | |
15 | 14 | biimpcd | |
16 | 15 | adantl | |
17 | 16 | impcom | |
18 | 1 | com12 | |
19 | 18 | adantr | |
20 | 19 | adantl | |
21 | 20 | imp | |
22 | simpr | |
|
23 | wlklenvm1 | |
|
24 | 22 23 | jccir | |
25 | 24 | ex | |
26 | 25 | eximdv | |
27 | 21 26 | mpd | |
28 | eqeq2 | |
|
29 | 28 | anbi2d | |
30 | 29 | exbidv | |
31 | 27 30 | imbitrid | |
32 | 31 | expd | |
33 | 17 32 | mpcom | |
34 | 33 | ex | |
35 | 5 34 | sylbid | |
36 | 35 | 3adant1 | |
37 | 3 36 | mpcom | |
38 | 37 | com12 | |