Description: If a walk in a pseudograph has length N , then the sequence of the vertices of the walk is a word representing the walk as word of length N . (Contributed by Alexander van der Vekens, 25-Aug-2018) (Revised by AV, 11-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wlknewwlksn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkcpr | |
|
2 | wlkn0 | |
|
3 | 1 2 | sylbi | |
4 | 3 | adantl | |
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 5 6 7 8 | wlkelwrd | |
10 | ffz0iswrd | |
|
11 | 10 | adantl | |
12 | 9 11 | syl | |
13 | 12 | adantl | |
14 | eqid | |
|
15 | 14 | upgrwlkvtxedg | |
16 | wlklenvm1 | |
|
17 | 16 | adantl | |
18 | 17 | oveq2d | |
19 | 18 | raleqdv | |
20 | 15 19 | mpbid | |
21 | 1 20 | sylan2b | |
22 | 4 13 21 | 3jca | |
23 | 22 | adantr | |
24 | simpl | |
|
25 | oveq2 | |
|
26 | 25 | adantl | |
27 | 26 | feq2d | |
28 | 27 | biimpd | |
29 | 28 | impancom | |
30 | 29 | adantld | |
31 | 30 | imp | |
32 | ffz0hash | |
|
33 | 24 31 32 | syl2an2 | |
34 | 33 | ex | |
35 | 9 34 | syl | |
36 | 35 | adantl | |
37 | 36 | imp | |
38 | 24 | adantl | |
39 | iswwlksn | |
|
40 | 5 14 | iswwlks | |
41 | 40 | a1i | |
42 | 41 | anbi1d | |
43 | 39 42 | bitrd | |
44 | 38 43 | syl | |
45 | 23 37 44 | mpbir2and | |