Metamath Proof Explorer


Theorem wlknewwlksn

Description: If a walk in a pseudograph has length N , then the sequence of the vertices of the walk is a word representing the walk as word of length N . (Contributed by Alexander van der Vekens, 25-Aug-2018) (Revised by AV, 11-Apr-2021)

Ref Expression
Assertion wlknewwlksn GUPGraphWWalksGN01stW=N2ndWNWWalksNG

Proof

Step Hyp Ref Expression
1 wlkcpr WWalksG1stWWalksG2ndW
2 wlkn0 1stWWalksG2ndW2ndW
3 1 2 sylbi WWalksG2ndW
4 3 adantl GUPGraphWWalksG2ndW
5 eqid VtxG=VtxG
6 eqid iEdgG=iEdgG
7 eqid 1stW=1stW
8 eqid 2ndW=2ndW
9 5 6 7 8 wlkelwrd WWalksG1stWWorddomiEdgG2ndW:01stWVtxG
10 ffz0iswrd 2ndW:01stWVtxG2ndWWordVtxG
11 10 adantl 1stWWorddomiEdgG2ndW:01stWVtxG2ndWWordVtxG
12 9 11 syl WWalksG2ndWWordVtxG
13 12 adantl GUPGraphWWalksG2ndWWordVtxG
14 eqid EdgG=EdgG
15 14 upgrwlkvtxedg GUPGraph1stWWalksG2ndWi0..^1stW2ndWi2ndWi+1EdgG
16 wlklenvm1 1stWWalksG2ndW1stW=2ndW1
17 16 adantl GUPGraph1stWWalksG2ndW1stW=2ndW1
18 17 oveq2d GUPGraph1stWWalksG2ndW0..^1stW=0..^2ndW1
19 18 raleqdv GUPGraph1stWWalksG2ndWi0..^1stW2ndWi2ndWi+1EdgGi0..^2ndW12ndWi2ndWi+1EdgG
20 15 19 mpbid GUPGraph1stWWalksG2ndWi0..^2ndW12ndWi2ndWi+1EdgG
21 1 20 sylan2b GUPGraphWWalksGi0..^2ndW12ndWi2ndWi+1EdgG
22 4 13 21 3jca GUPGraphWWalksG2ndW2ndWWordVtxGi0..^2ndW12ndWi2ndWi+1EdgG
23 22 adantr GUPGraphWWalksGN01stW=N2ndW2ndWWordVtxGi0..^2ndW12ndWi2ndWi+1EdgG
24 simpl N01stW=NN0
25 oveq2 1stW=N01stW=0N
26 25 adantl 1stWWorddomiEdgG1stW=N01stW=0N
27 26 feq2d 1stWWorddomiEdgG1stW=N2ndW:01stWVtxG2ndW:0NVtxG
28 27 biimpd 1stWWorddomiEdgG1stW=N2ndW:01stWVtxG2ndW:0NVtxG
29 28 impancom 1stWWorddomiEdgG2ndW:01stWVtxG1stW=N2ndW:0NVtxG
30 29 adantld 1stWWorddomiEdgG2ndW:01stWVtxGN01stW=N2ndW:0NVtxG
31 30 imp 1stWWorddomiEdgG2ndW:01stWVtxGN01stW=N2ndW:0NVtxG
32 ffz0hash N02ndW:0NVtxG2ndW=N+1
33 24 31 32 syl2an2 1stWWorddomiEdgG2ndW:01stWVtxGN01stW=N2ndW=N+1
34 33 ex 1stWWorddomiEdgG2ndW:01stWVtxGN01stW=N2ndW=N+1
35 9 34 syl WWalksGN01stW=N2ndW=N+1
36 35 adantl GUPGraphWWalksGN01stW=N2ndW=N+1
37 36 imp GUPGraphWWalksGN01stW=N2ndW=N+1
38 24 adantl GUPGraphWWalksGN01stW=NN0
39 iswwlksn N02ndWNWWalksNG2ndWWWalksG2ndW=N+1
40 5 14 iswwlks 2ndWWWalksG2ndW2ndWWordVtxGi0..^2ndW12ndWi2ndWi+1EdgG
41 40 a1i N02ndWWWalksG2ndW2ndWWordVtxGi0..^2ndW12ndWi2ndWi+1EdgG
42 41 anbi1d N02ndWWWalksG2ndW=N+12ndW2ndWWordVtxGi0..^2ndW12ndWi2ndWi+1EdgG2ndW=N+1
43 39 42 bitrd N02ndWNWWalksNG2ndW2ndWWordVtxGi0..^2ndW12ndWi2ndWi+1EdgG2ndW=N+1
44 38 43 syl GUPGraphWWalksGN01stW=N2ndWNWWalksNG2ndW2ndWWordVtxGi0..^2ndW12ndWi2ndWi+1EdgG2ndW=N+1
45 23 37 44 mpbir2and GUPGraphWWalksGN01stW=N2ndWNWWalksNG