Metamath Proof Explorer


Theorem wrecseq123OLD

Description: Obsolete proof of wrecseq123 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 7-Jun-2018)

Ref Expression
Assertion wrecseq123OLD R=SA=BF=GwrecsRAF=wrecsSBG

Proof

Step Hyp Ref Expression
1 sseq2 A=BxAxB
2 1 3ad2ant2 R=SA=BF=GxAxB
3 predeq1 R=SPredRAy=PredSAy
4 predeq2 A=BPredSAy=PredSBy
5 3 4 sylan9eq R=SA=BPredRAy=PredSBy
6 5 3adant3 R=SA=BF=GPredRAy=PredSBy
7 6 sseq1d R=SA=BF=GPredRAyxPredSByx
8 7 ralbidv R=SA=BF=GyxPredRAyxyxPredSByx
9 2 8 anbi12d R=SA=BF=GxAyxPredRAyxxByxPredSByx
10 simp3 R=SA=BF=GF=G
11 5 reseq2d R=SA=BfPredRAy=fPredSBy
12 11 3adant3 R=SA=BF=GfPredRAy=fPredSBy
13 10 12 fveq12d R=SA=BF=GFfPredRAy=GfPredSBy
14 13 eqeq2d R=SA=BF=Gfy=FfPredRAyfy=GfPredSBy
15 14 ralbidv R=SA=BF=Gyxfy=FfPredRAyyxfy=GfPredSBy
16 9 15 3anbi23d R=SA=BF=GfFnxxAyxPredRAyxyxfy=FfPredRAyfFnxxByxPredSByxyxfy=GfPredSBy
17 16 exbidv R=SA=BF=GxfFnxxAyxPredRAyxyxfy=FfPredRAyxfFnxxByxPredSByxyxfy=GfPredSBy
18 17 abbidv R=SA=BF=Gf|xfFnxxAyxPredRAyxyxfy=FfPredRAy=f|xfFnxxByxPredSByxyxfy=GfPredSBy
19 18 unieqd R=SA=BF=Gf|xfFnxxAyxPredRAyxyxfy=FfPredRAy=f|xfFnxxByxPredSByxyxfy=GfPredSBy
20 dfwrecsOLD wrecsRAF=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
21 dfwrecsOLD wrecsSBG=f|xfFnxxByxPredSByxyxfy=GfPredSBy
22 19 20 21 3eqtr4g R=SA=BF=GwrecsRAF=wrecsSBG