Metamath Proof Explorer


Theorem xmsusp

Description: If the uniform set of a metric space is the uniform structure generated by its metric, then it is a uniform space. (Contributed by Thierry Arnoux, 14-Dec-2017)

Ref Expression
Hypotheses xmsusp.x X=BaseF
xmsusp.d D=distFX×X
xmsusp.u U=UnifStF
Assertion xmsusp XF∞MetSpU=metUnifDFUnifSp

Proof

Step Hyp Ref Expression
1 xmsusp.x X=BaseF
2 xmsusp.d D=distFX×X
3 xmsusp.u U=UnifStF
4 simp3 XF∞MetSpU=metUnifDU=metUnifD
5 simp1 XF∞MetSpU=metUnifDX
6 1 2 xmsxmet F∞MetSpD∞MetX
7 6 3ad2ant2 XF∞MetSpU=metUnifDD∞MetX
8 xmetpsmet D∞MetXDPsMetX
9 metuust XDPsMetXmetUnifDUnifOnX
10 8 9 sylan2 XD∞MetXmetUnifDUnifOnX
11 5 7 10 syl2anc XF∞MetSpU=metUnifDmetUnifDUnifOnX
12 4 11 eqeltrd XF∞MetSpU=metUnifDUUnifOnX
13 xmetutop XD∞MetXunifTopmetUnifD=MetOpenD
14 5 7 13 syl2anc XF∞MetSpU=metUnifDunifTopmetUnifD=MetOpenD
15 4 fveq2d XF∞MetSpU=metUnifDunifTopU=unifTopmetUnifD
16 eqid TopOpenF=TopOpenF
17 16 1 2 xmstopn F∞MetSpTopOpenF=MetOpenD
18 17 3ad2ant2 XF∞MetSpU=metUnifDTopOpenF=MetOpenD
19 14 15 18 3eqtr4rd XF∞MetSpU=metUnifDTopOpenF=unifTopU
20 1 3 16 isusp FUnifSpUUnifOnXTopOpenF=unifTopU
21 12 19 20 sylanbrc XF∞MetSpU=metUnifDFUnifSp