Description: If the uniform set of a metric space is the uniform structure generated by its metric, then it is a uniform space. (Contributed by Thierry Arnoux, 14-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xmsusp.x | |
|
xmsusp.d | |
||
xmsusp.u | |
||
Assertion | xmsusp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmsusp.x | |
|
2 | xmsusp.d | |
|
3 | xmsusp.u | |
|
4 | simp3 | |
|
5 | simp1 | |
|
6 | 1 2 | xmsxmet | |
7 | 6 | 3ad2ant2 | |
8 | xmetpsmet | |
|
9 | metuust | |
|
10 | 8 9 | sylan2 | |
11 | 5 7 10 | syl2anc | |
12 | 4 11 | eqeltrd | |
13 | xmetutop | |
|
14 | 5 7 13 | syl2anc | |
15 | 4 | fveq2d | |
16 | eqid | |
|
17 | 16 1 2 | xmstopn | |
18 | 17 | 3ad2ant2 | |
19 | 14 15 18 | 3eqtr4rd | |
20 | 1 3 16 | isusp | |
21 | 12 19 20 | sylanbrc | |