Metamath Proof Explorer


Theorem xmulgt0

Description: Extended real version of mulgt0 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulgt0 A*0<AB*0<B0<A𝑒B

Proof

Step Hyp Ref Expression
1 simpr A*0<A0<A
2 simpr B*0<B0<B
3 1 2 anim12i A*0<AB*0<B0<A0<B
4 mulgt0 A0<AB0<B0<AB
5 4 an4s AB0<A0<B0<AB
6 5 ancoms 0<A0<BAB0<AB
7 rexmul ABA𝑒B=AB
8 7 adantl 0<A0<BABA𝑒B=AB
9 6 8 breqtrrd 0<A0<BAB0<A𝑒B
10 3 9 sylan A*0<AB*0<BAB0<A𝑒B
11 10 anassrs A*0<AB*0<BAB0<A𝑒B
12 0ltpnf 0<+∞
13 oveq2 B=+∞A𝑒B=A𝑒+∞
14 xmulpnf1 A*0<AA𝑒+∞=+∞
15 14 adantr A*0<AB*0<BA𝑒+∞=+∞
16 13 15 sylan9eqr A*0<AB*0<BB=+∞A𝑒B=+∞
17 12 16 breqtrrid A*0<AB*0<BB=+∞0<A𝑒B
18 17 adantlr A*0<AB*0<BAB=+∞0<A𝑒B
19 simplrr A*0<AB*0<BA0<B
20 xmulasslem2 0<BB=−∞0<A𝑒B
21 19 20 sylan A*0<AB*0<BAB=−∞0<A𝑒B
22 simprl A*0<AB*0<BB*
23 elxr B*BB=+∞B=−∞
24 22 23 sylib A*0<AB*0<BBB=+∞B=−∞
25 24 adantr A*0<AB*0<BABB=+∞B=−∞
26 11 18 21 25 mpjao3dan A*0<AB*0<BA0<A𝑒B
27 oveq1 A=+∞A𝑒B=+∞𝑒B
28 xmulpnf2 B*0<B+∞𝑒B=+∞
29 28 adantl A*0<AB*0<B+∞𝑒B=+∞
30 27 29 sylan9eqr A*0<AB*0<BA=+∞A𝑒B=+∞
31 12 30 breqtrrid A*0<AB*0<BA=+∞0<A𝑒B
32 xmulasslem2 0<AA=−∞0<A𝑒B
33 32 ad4ant24 A*0<AB*0<BA=−∞0<A𝑒B
34 simpll A*0<AB*0<BA*
35 elxr A*AA=+∞A=−∞
36 34 35 sylib A*0<AB*0<BAA=+∞A=−∞
37 26 31 33 36 mpjao3dan A*0<AB*0<B0<A𝑒B