Metamath Proof Explorer


Theorem xmulge0

Description: Extended real version of mulge0 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulge0 A*0AB*0B0A𝑒B

Proof

Step Hyp Ref Expression
1 xmulgt0 A*0<AB*0<B0<A𝑒B
2 1 an4s A*B*0<A0<B0<A𝑒B
3 0xr 0*
4 xmulcl A*B*A𝑒B*
5 4 adantr A*B*0<A0<BA𝑒B*
6 xrltle 0*A𝑒B*0<A𝑒B0A𝑒B
7 3 5 6 sylancr A*B*0<A0<B0<A𝑒B0A𝑒B
8 2 7 mpd A*B*0<A0<B0A𝑒B
9 8 ex A*B*0<A0<B0A𝑒B
10 9 ad2ant2r A*0AB*0B0<A0<B0A𝑒B
11 10 impl A*0AB*0B0<A0<B0A𝑒B
12 0le0 00
13 oveq2 0=BA𝑒0=A𝑒B
14 13 eqcomd 0=BA𝑒B=A𝑒0
15 xmul01 A*A𝑒0=0
16 15 ad2antrr A*0AB*0BA𝑒0=0
17 14 16 sylan9eqr A*0AB*0B0=BA𝑒B=0
18 12 17 breqtrrid A*0AB*0B0=B0A𝑒B
19 18 adantlr A*0AB*0B0<A0=B0A𝑒B
20 xrleloe 0*B*0B0<B0=B
21 3 20 mpan B*0B0<B0=B
22 21 biimpa B*0B0<B0=B
23 22 ad2antlr A*0AB*0B0<A0<B0=B
24 11 19 23 mpjaodan A*0AB*0B0<A0A𝑒B
25 oveq1 0=A0𝑒B=A𝑒B
26 25 eqcomd 0=AA𝑒B=0𝑒B
27 xmul02 B*0𝑒B=0
28 27 ad2antrl A*0AB*0B0𝑒B=0
29 26 28 sylan9eqr A*0AB*0B0=AA𝑒B=0
30 12 29 breqtrrid A*0AB*0B0=A0A𝑒B
31 xrleloe 0*A*0A0<A0=A
32 3 31 mpan A*0A0<A0=A
33 32 biimpa A*0A0<A0=A
34 33 adantr A*0AB*0B0<A0=A
35 24 30 34 mpjaodan A*0AB*0B0A𝑒B