Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xmullem2
Next ⟩
xmulcom
Metamath Proof Explorer
Ascii
Unicode
Theorem
xmullem2
Description:
Lemma for
xmulneg1
.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
xmullem2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
Proof
Step
Hyp
Ref
Expression
1
mnfnepnf
⊢
−∞
≠
+∞
2
eqeq1
⊢
A
=
−∞
→
A
=
+∞
↔
−∞
=
+∞
3
2
necon3bbid
⊢
A
=
−∞
→
¬
A
=
+∞
↔
−∞
≠
+∞
4
1
3
mpbiri
⊢
A
=
−∞
→
¬
A
=
+∞
5
4
con2i
⊢
A
=
+∞
→
¬
A
=
−∞
6
5
adantl
⊢
0
<
B
∧
A
=
+∞
→
¬
A
=
−∞
7
0xr
⊢
0
∈
ℝ
*
8
nltmnf
⊢
0
∈
ℝ
*
→
¬
0
<
−∞
9
7
8
ax-mp
⊢
¬
0
<
−∞
10
breq2
⊢
A
=
−∞
→
0
<
A
↔
0
<
−∞
11
9
10
mtbiri
⊢
A
=
−∞
→
¬
0
<
A
12
11
con2i
⊢
0
<
A
→
¬
A
=
−∞
13
12
adantr
⊢
0
<
A
∧
B
=
+∞
→
¬
A
=
−∞
14
6
13
jaoi
⊢
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
→
¬
A
=
−∞
15
14
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
→
¬
A
=
−∞
16
simpr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
∈
ℝ
*
17
xrltnsym
⊢
B
∈
ℝ
*
∧
0
∈
ℝ
*
→
B
<
0
→
¬
0
<
B
18
16
7
17
sylancl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
<
0
→
¬
0
<
B
19
18
adantrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
<
0
∧
A
=
−∞
→
¬
0
<
B
20
breq2
⊢
B
=
−∞
→
0
<
B
↔
0
<
−∞
21
9
20
mtbiri
⊢
B
=
−∞
→
¬
0
<
B
22
21
adantl
⊢
A
<
0
∧
B
=
−∞
→
¬
0
<
B
23
22
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
<
0
∧
B
=
−∞
→
¬
0
<
B
24
19
23
jaod
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
25
15
24
orim12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
A
=
−∞
∨
¬
0
<
B
26
ianor
⊢
¬
0
<
B
∧
A
=
−∞
↔
¬
0
<
B
∨
¬
A
=
−∞
27
orcom
⊢
¬
0
<
B
∨
¬
A
=
−∞
↔
¬
A
=
−∞
∨
¬
0
<
B
28
26
27
bitri
⊢
¬
0
<
B
∧
A
=
−∞
↔
¬
A
=
−∞
∨
¬
0
<
B
29
25
28
imbitrrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
∧
A
=
−∞
30
18
con2d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
→
¬
B
<
0
31
30
adantrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
→
¬
B
<
0
32
pnfnlt
⊢
0
∈
ℝ
*
→
¬
+∞
<
0
33
7
32
ax-mp
⊢
¬
+∞
<
0
34
simpr
⊢
0
<
A
∧
B
=
+∞
→
B
=
+∞
35
34
breq1d
⊢
0
<
A
∧
B
=
+∞
→
B
<
0
↔
+∞
<
0
36
33
35
mtbiri
⊢
0
<
A
∧
B
=
+∞
→
¬
B
<
0
37
36
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
A
∧
B
=
+∞
→
¬
B
<
0
38
31
37
jaod
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
→
¬
B
<
0
39
4
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
=
−∞
→
¬
A
=
+∞
40
39
adantld
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
<
0
∧
A
=
−∞
→
¬
A
=
+∞
41
breq1
⊢
A
=
+∞
→
A
<
0
↔
+∞
<
0
42
33
41
mtbiri
⊢
A
=
+∞
→
¬
A
<
0
43
42
con2i
⊢
A
<
0
→
¬
A
=
+∞
44
43
adantr
⊢
A
<
0
∧
B
=
−∞
→
¬
A
=
+∞
45
44
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
<
0
∧
B
=
−∞
→
¬
A
=
+∞
46
40
45
jaod
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
A
=
+∞
47
38
46
orim12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
B
<
0
∨
¬
A
=
+∞
48
ianor
⊢
¬
B
<
0
∧
A
=
+∞
↔
¬
B
<
0
∨
¬
A
=
+∞
49
47
48
imbitrrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
B
<
0
∧
A
=
+∞
50
29
49
jcad
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
∧
A
=
−∞
∧
¬
B
<
0
∧
A
=
+∞
51
ioran
⊢
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
↔
¬
0
<
B
∧
A
=
−∞
∧
¬
B
<
0
∧
A
=
+∞
52
50
51
imbitrrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
53
21
con2i
⊢
0
<
B
→
¬
B
=
−∞
54
53
adantr
⊢
0
<
B
∧
A
=
+∞
→
¬
B
=
−∞
55
54
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
→
¬
B
=
−∞
56
pnfnemnf
⊢
+∞
≠
−∞
57
eqeq1
⊢
B
=
+∞
→
B
=
−∞
↔
+∞
=
−∞
58
57
necon3bbid
⊢
B
=
+∞
→
¬
B
=
−∞
↔
+∞
≠
−∞
59
56
58
mpbiri
⊢
B
=
+∞
→
¬
B
=
−∞
60
59
adantl
⊢
0
<
A
∧
B
=
+∞
→
¬
B
=
−∞
61
60
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
A
∧
B
=
+∞
→
¬
B
=
−∞
62
55
61
jaod
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
→
¬
B
=
−∞
63
11
adantl
⊢
B
<
0
∧
A
=
−∞
→
¬
0
<
A
64
63
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
<
0
∧
A
=
−∞
→
¬
0
<
A
65
simpl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
∈
ℝ
*
66
xrltnsym
⊢
A
∈
ℝ
*
∧
0
∈
ℝ
*
→
A
<
0
→
¬
0
<
A
67
65
7
66
sylancl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
<
0
→
¬
0
<
A
68
67
adantrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
<
0
∧
B
=
−∞
→
¬
0
<
A
69
64
68
jaod
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
A
70
62
69
orim12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
B
=
−∞
∨
¬
0
<
A
71
ianor
⊢
¬
0
<
A
∧
B
=
−∞
↔
¬
0
<
A
∨
¬
B
=
−∞
72
orcom
⊢
¬
0
<
A
∨
¬
B
=
−∞
↔
¬
B
=
−∞
∨
¬
0
<
A
73
71
72
bitri
⊢
¬
0
<
A
∧
B
=
−∞
↔
¬
B
=
−∞
∨
¬
0
<
A
74
70
73
imbitrrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
A
∧
B
=
−∞
75
42
adantl
⊢
0
<
B
∧
A
=
+∞
→
¬
A
<
0
76
75
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
→
¬
A
<
0
77
67
con2d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
A
→
¬
A
<
0
78
77
adantrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
A
∧
B
=
+∞
→
¬
A
<
0
79
76
78
jaod
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
→
¬
A
<
0
80
breq1
⊢
B
=
+∞
→
B
<
0
↔
+∞
<
0
81
33
80
mtbiri
⊢
B
=
+∞
→
¬
B
<
0
82
81
con2i
⊢
B
<
0
→
¬
B
=
+∞
83
82
adantr
⊢
B
<
0
∧
A
=
−∞
→
¬
B
=
+∞
84
59
con2i
⊢
B
=
−∞
→
¬
B
=
+∞
85
84
adantl
⊢
A
<
0
∧
B
=
−∞
→
¬
B
=
+∞
86
83
85
jaoi
⊢
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
B
=
+∞
87
86
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
B
=
+∞
88
79
87
orim12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
A
<
0
∨
¬
B
=
+∞
89
ianor
⊢
¬
A
<
0
∧
B
=
+∞
↔
¬
A
<
0
∨
¬
B
=
+∞
90
88
89
imbitrrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
A
<
0
∧
B
=
+∞
91
74
90
jcad
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
A
∧
B
=
−∞
∧
¬
A
<
0
∧
B
=
+∞
92
ioran
⊢
¬
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
↔
¬
0
<
A
∧
B
=
−∞
∧
¬
A
<
0
∧
B
=
+∞
93
91
92
imbitrrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
94
52
93
jcad
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∧
¬
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
95
or4
⊢
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
↔
0
<
B
∧
A
=
+∞
∨
0
<
A
∧
B
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
A
<
0
∧
B
=
−∞
96
ioran
⊢
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
↔
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∧
¬
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
97
94
95
96
3imtr4g
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞