Metamath Proof Explorer


Theorem xpord2indlem

Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses xpord2.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxy
xpord2indlem.1 RFrA
xpord2indlem.2 RPoA
xpord2indlem.3 RSeA
xpord2indlem.4 SFrB
xpord2indlem.5 SPoB
xpord2indlem.6 SSeB
xpord2indlem.7 a=cφψ
xpord2indlem.8 b=dψχ
xpord2indlem.9 a=cθχ
xpord2indlem.11 a=Xφτ
xpord2indlem.12 b=Yτη
xpord2indlem.i aAbBcPredRAadPredSBbχcPredRAaψdPredSBbθφ
Assertion xpord2indlem XAYBη

Proof

Step Hyp Ref Expression
1 xpord2.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxy
2 xpord2indlem.1 RFrA
3 xpord2indlem.2 RPoA
4 xpord2indlem.3 RSeA
5 xpord2indlem.4 SFrB
6 xpord2indlem.5 SPoB
7 xpord2indlem.6 SSeB
8 xpord2indlem.7 a=cφψ
9 xpord2indlem.8 b=dψχ
10 xpord2indlem.9 a=cθχ
11 xpord2indlem.11 a=Xφτ
12 xpord2indlem.12 b=Yτη
13 xpord2indlem.i aAbBcPredRAadPredSBbχcPredRAaψdPredSBbθφ
14 2 a1i RFrA
15 5 a1i SFrB
16 1 14 15 frxp2 TFrA×B
17 3 a1i RPoA
18 6 a1i SPoB
19 1 17 18 poxp2 TPoA×B
20 4 a1i RSeA
21 7 a1i SSeB
22 1 20 21 sexp2 TSeA×B
23 16 19 22 3jca TFrA×BTPoA×BTSeA×B
24 23 mptru TFrA×BTPoA×BTSeA×B
25 1 xpord2pred aAbBPredTA×Bab=PredRAaa×PredSBbbab
26 25 eleq2d aAbBcdPredTA×BabcdPredRAaa×PredSBbbab
27 26 imbi1d aAbBcdPredTA×BabχcdPredRAaa×PredSBbbabχ
28 eldif cdPredRAaa×PredSBbbabcdPredRAaa×PredSBbb¬cdab
29 opelxp cdPredRAaa×PredSBbbcPredRAaadPredSBbb
30 opex cdV
31 30 elsn cdabcd=ab
32 31 notbii ¬cdab¬cd=ab
33 df-ne cdab¬cd=ab
34 vex cV
35 vex dV
36 34 35 opthne cdabcadb
37 32 33 36 3bitr2i ¬cdabcadb
38 29 37 anbi12i cdPredRAaa×PredSBbb¬cdabcPredRAaadPredSBbbcadb
39 28 38 bitri cdPredRAaa×PredSBbbabcPredRAaadPredSBbbcadb
40 39 imbi1i cdPredRAaa×PredSBbbabχcPredRAaadPredSBbbcadbχ
41 impexp cPredRAaadPredSBbbcadbχcPredRAaadPredSBbbcadbχ
42 40 41 bitri cdPredRAaa×PredSBbbabχcPredRAaadPredSBbbcadbχ
43 27 42 bitrdi aAbBcdPredTA×BabχcPredRAaadPredSBbbcadbχ
44 43 2albidv aAbBcdcdPredTA×BabχcdcPredRAaadPredSBbbcadbχ
45 r2al cPredRAaadPredSBbbcadbχcdcPredRAaadPredSBbbcadbχ
46 44 45 bitr4di aAbBcdcdPredTA×BabχcPredRAaadPredSBbbcadbχ
47 ssun1 PredRAaPredRAaa
48 ssralv PredRAaPredRAaacPredRAaadPredSBbbcadbχcPredRAadPredSBbbcadbχ
49 47 48 ax-mp cPredRAaadPredSBbbcadbχcPredRAadPredSBbbcadbχ
50 ssun1 PredSBbPredSBbb
51 ssralv PredSBbPredSBbbdPredSBbbcadbχdPredSBbcadbχ
52 50 51 ax-mp dPredSBbbcadbχdPredSBbcadbχ
53 52 ralimi cPredRAadPredSBbbcadbχcPredRAadPredSBbcadbχ
54 49 53 syl cPredRAaadPredSBbbcadbχcPredRAadPredSBbcadbχ
55 predpoirr SPoB¬bPredSBb
56 6 55 ax-mp ¬bPredSBb
57 eleq1w d=bdPredSBbbPredSBb
58 56 57 mtbiri d=b¬dPredSBb
59 58 necon2ai dPredSBbdb
60 59 olcd dPredSBbcadb
61 pm2.27 cadbcadbχχ
62 60 61 syl dPredSBbcadbχχ
63 62 ralimia dPredSBbcadbχdPredSBbχ
64 63 ralimi cPredRAadPredSBbcadbχcPredRAadPredSBbχ
65 54 64 syl cPredRAaadPredSBbbcadbχcPredRAadPredSBbχ
66 ssun2 bPredSBbb
67 ssralv bPredSBbbdPredSBbbcadbχdbcadbχ
68 66 67 ax-mp dPredSBbbcadbχdbcadbχ
69 68 ralimi cPredRAadPredSBbbcadbχcPredRAadbcadbχ
70 49 69 syl cPredRAaadPredSBbbcadbχcPredRAadbcadbχ
71 vex bV
72 neeq1 d=bdbbb
73 72 orbi2d d=bcadbcabb
74 9 equcoms d=bψχ
75 74 bicomd d=bχψ
76 73 75 imbi12d d=bcadbχcabbψ
77 71 76 ralsn dbcadbχcabbψ
78 77 ralbii cPredRAadbcadbχcPredRAacabbψ
79 70 78 sylib cPredRAaadPredSBbbcadbχcPredRAacabbψ
80 predpoirr RPoA¬aPredRAa
81 3 80 ax-mp ¬aPredRAa
82 eleq1w c=acPredRAaaPredRAa
83 81 82 mtbiri c=a¬cPredRAa
84 83 necon2ai cPredRAaca
85 84 orcd cPredRAacabb
86 pm2.27 cabbcabbψψ
87 85 86 syl cPredRAacabbψψ
88 87 ralimia cPredRAacabbψcPredRAaψ
89 79 88 syl cPredRAaadPredSBbbcadbχcPredRAaψ
90 ssun2 aPredRAaa
91 ssralv aPredRAaacPredRAaadPredSBbbcadbχcadPredSBbbcadbχ
92 90 91 ax-mp cPredRAaadPredSBbbcadbχcadPredSBbbcadbχ
93 52 ralimi cadPredSBbbcadbχcadPredSBbcadbχ
94 92 93 syl cPredRAaadPredSBbbcadbχcadPredSBbcadbχ
95 vex aV
96 neeq1 c=acaaa
97 96 orbi1d c=acadbaadb
98 10 equcoms c=aθχ
99 98 bicomd c=aχθ
100 97 99 imbi12d c=acadbχaadbθ
101 100 ralbidv c=adPredSBbcadbχdPredSBbaadbθ
102 95 101 ralsn cadPredSBbcadbχdPredSBbaadbθ
103 94 102 sylib cPredRAaadPredSBbbcadbχdPredSBbaadbθ
104 59 olcd dPredSBbaadb
105 pm2.27 aadbaadbθθ
106 104 105 syl dPredSBbaadbθθ
107 106 ralimia dPredSBbaadbθdPredSBbθ
108 103 107 syl cPredRAaadPredSBbbcadbχdPredSBbθ
109 65 89 108 3jca cPredRAaadPredSBbbcadbχcPredRAadPredSBbχcPredRAaψdPredSBbθ
110 109 13 syl5 aAbBcPredRAaadPredSBbbcadbχφ
111 46 110 sylbid aAbBcdcdPredTA×Babχφ
112 111 8 9 11 12 frpoins3xpg TFrA×BTPoA×BTSeA×BXAYBη
113 24 112 mpan XAYBη