Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpord2.1 | |
|
xpord2indlem.1 | |
||
xpord2indlem.2 | |
||
xpord2indlem.3 | |
||
xpord2indlem.4 | |
||
xpord2indlem.5 | |
||
xpord2indlem.6 | |
||
xpord2indlem.7 | |
||
xpord2indlem.8 | |
||
xpord2indlem.9 | |
||
xpord2indlem.11 | |
||
xpord2indlem.12 | |
||
xpord2indlem.i | |
||
Assertion | xpord2indlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpord2.1 | |
|
2 | xpord2indlem.1 | |
|
3 | xpord2indlem.2 | |
|
4 | xpord2indlem.3 | |
|
5 | xpord2indlem.4 | |
|
6 | xpord2indlem.5 | |
|
7 | xpord2indlem.6 | |
|
8 | xpord2indlem.7 | |
|
9 | xpord2indlem.8 | |
|
10 | xpord2indlem.9 | |
|
11 | xpord2indlem.11 | |
|
12 | xpord2indlem.12 | |
|
13 | xpord2indlem.i | |
|
14 | 2 | a1i | |
15 | 5 | a1i | |
16 | 1 14 15 | frxp2 | |
17 | 3 | a1i | |
18 | 6 | a1i | |
19 | 1 17 18 | poxp2 | |
20 | 4 | a1i | |
21 | 7 | a1i | |
22 | 1 20 21 | sexp2 | |
23 | 16 19 22 | 3jca | |
24 | 23 | mptru | |
25 | 1 | xpord2pred | |
26 | 25 | eleq2d | |
27 | 26 | imbi1d | |
28 | eldif | |
|
29 | opelxp | |
|
30 | opex | |
|
31 | 30 | elsn | |
32 | 31 | notbii | |
33 | df-ne | |
|
34 | vex | |
|
35 | vex | |
|
36 | 34 35 | opthne | |
37 | 32 33 36 | 3bitr2i | |
38 | 29 37 | anbi12i | |
39 | 28 38 | bitri | |
40 | 39 | imbi1i | |
41 | impexp | |
|
42 | 40 41 | bitri | |
43 | 27 42 | bitrdi | |
44 | 43 | 2albidv | |
45 | r2al | |
|
46 | 44 45 | bitr4di | |
47 | ssun1 | |
|
48 | ssralv | |
|
49 | 47 48 | ax-mp | |
50 | ssun1 | |
|
51 | ssralv | |
|
52 | 50 51 | ax-mp | |
53 | 52 | ralimi | |
54 | 49 53 | syl | |
55 | predpoirr | |
|
56 | 6 55 | ax-mp | |
57 | eleq1w | |
|
58 | 56 57 | mtbiri | |
59 | 58 | necon2ai | |
60 | 59 | olcd | |
61 | pm2.27 | |
|
62 | 60 61 | syl | |
63 | 62 | ralimia | |
64 | 63 | ralimi | |
65 | 54 64 | syl | |
66 | ssun2 | |
|
67 | ssralv | |
|
68 | 66 67 | ax-mp | |
69 | 68 | ralimi | |
70 | 49 69 | syl | |
71 | vex | |
|
72 | neeq1 | |
|
73 | 72 | orbi2d | |
74 | 9 | equcoms | |
75 | 74 | bicomd | |
76 | 73 75 | imbi12d | |
77 | 71 76 | ralsn | |
78 | 77 | ralbii | |
79 | 70 78 | sylib | |
80 | predpoirr | |
|
81 | 3 80 | ax-mp | |
82 | eleq1w | |
|
83 | 81 82 | mtbiri | |
84 | 83 | necon2ai | |
85 | 84 | orcd | |
86 | pm2.27 | |
|
87 | 85 86 | syl | |
88 | 87 | ralimia | |
89 | 79 88 | syl | |
90 | ssun2 | |
|
91 | ssralv | |
|
92 | 90 91 | ax-mp | |
93 | 52 | ralimi | |
94 | 92 93 | syl | |
95 | vex | |
|
96 | neeq1 | |
|
97 | 96 | orbi1d | |
98 | 10 | equcoms | |
99 | 98 | bicomd | |
100 | 97 99 | imbi12d | |
101 | 100 | ralbidv | |
102 | 95 101 | ralsn | |
103 | 94 102 | sylib | |
104 | 59 | olcd | |
105 | pm2.27 | |
|
106 | 104 105 | syl | |
107 | 106 | ralimia | |
108 | 103 107 | syl | |
109 | 65 89 108 | 3jca | |
110 | 109 13 | syl5 | |
111 | 46 110 | sylbid | |
112 | 111 8 9 11 12 | frpoins3xpg | |
113 | 24 112 | mpan | |