Metamath Proof Explorer


Theorem xrge0tsmsbi

Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 23-Jun-2017)

Ref Expression
Hypotheses xrge0tsmseq.g G=𝑠*𝑠0+∞
xrge0tsmseq.a φAV
xrge0tsmseq.f φF:A0+∞
Assertion xrge0tsmsbi φCGtsumsFC=GtsumsF

Proof

Step Hyp Ref Expression
1 xrge0tsmseq.g G=𝑠*𝑠0+∞
2 xrge0tsmseq.a φAV
3 xrge0tsmseq.f φF:A0+∞
4 1 xrge0tsms2 AVF:A0+∞GtsumsF1𝑜
5 2 3 4 syl2anc φGtsumsF1𝑜
6 en1b GtsumsF1𝑜GtsumsF=GtsumsF
7 5 6 sylib φGtsumsF=GtsumsF
8 7 eleq2d φCGtsumsFCGtsumsF
9 ovex GtsumsFV
10 9 uniex GtsumsFV
11 eleq1 C=GtsumsFCVGtsumsFV
12 10 11 mpbiri C=GtsumsFCV
13 elsng CVCGtsumsFC=GtsumsF
14 12 13 syl C=GtsumsFCGtsumsFC=GtsumsF
15 14 ibir C=GtsumsFCGtsumsF
16 elsni CGtsumsFC=GtsumsF
17 15 16 impbii C=GtsumsFCGtsumsF
18 8 17 bitr4di φCGtsumsFC=GtsumsF