Metamath Proof Explorer


Theorem xrsdsre

Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypothesis xrsxmet.1 ⊒D=dist⁑ℝ𝑠*
Assertion xrsdsre ⊒D↾ℝ2=absβˆ˜βˆ’β†Ύβ„2

Proof

Step Hyp Ref Expression
1 xrsxmet.1 ⊒D=dist⁑ℝ𝑠*
2 1 xrsdsreval ⊒xβˆˆβ„βˆ§yβˆˆβ„β†’xDy=xβˆ’y
3 ovres ⊒xβˆˆβ„βˆ§yβˆˆβ„β†’xD↾ℝ2y=xDy
4 eqid ⊒absβˆ˜βˆ’β†Ύβ„2=absβˆ˜βˆ’β†Ύβ„2
5 4 remetdval ⊒xβˆˆβ„βˆ§yβˆˆβ„β†’xabsβˆ˜βˆ’β†Ύβ„2y=xβˆ’y
6 2 3 5 3eqtr4d ⊒xβˆˆβ„βˆ§yβˆˆβ„β†’xD↾ℝ2y=xabsβˆ˜βˆ’β†Ύβ„2y
7 6 rgen2 βŠ’βˆ€xβˆˆβ„βˆ€yβˆˆβ„xD↾ℝ2y=xabsβˆ˜βˆ’β†Ύβ„2y
8 1 xrsxmet ⊒D∈∞Met⁑ℝ*
9 xmetf ⊒D∈∞Met⁑ℝ*β†’D:ℝ*×ℝ*βŸΆβ„*
10 ffn ⊒D:ℝ*×ℝ*βŸΆβ„*β†’DFnℝ*×ℝ*
11 8 9 10 mp2b ⊒DFnℝ*×ℝ*
12 rexpssxrxp βŠ’β„2βŠ†β„*×ℝ*
13 fnssres ⊒DFnℝ*×ℝ*βˆ§β„2βŠ†β„*×ℝ*β†’D↾ℝ2Fnℝ2
14 11 12 13 mp2an ⊒D↾ℝ2Fnℝ2
15 cnmet ⊒absβˆ˜βˆ’βˆˆMet⁑ℂ
16 metf ⊒absβˆ˜βˆ’βˆˆMet⁑ℂ→absβˆ˜βˆ’:β„‚Γ—β„‚βŸΆβ„
17 ffn ⊒absβˆ˜βˆ’:β„‚Γ—β„‚βŸΆβ„β†’absβˆ˜βˆ’Fnβ„‚Γ—β„‚
18 15 16 17 mp2b ⊒absβˆ˜βˆ’Fnβ„‚Γ—β„‚
19 ax-resscn βŠ’β„βŠ†β„‚
20 xpss12 βŠ’β„βŠ†β„‚βˆ§β„βŠ†β„‚β†’β„2βŠ†β„‚Γ—β„‚
21 19 19 20 mp2an βŠ’β„2βŠ†β„‚Γ—β„‚
22 fnssres ⊒absβˆ˜βˆ’Fnβ„‚Γ—β„‚βˆ§β„2βŠ†β„‚Γ—β„‚β†’absβˆ˜βˆ’β†Ύβ„2Fnℝ2
23 18 21 22 mp2an ⊒absβˆ˜βˆ’β†Ύβ„2Fnℝ2
24 eqfnov2 ⊒D↾ℝ2Fnℝ2∧absβˆ˜βˆ’β†Ύβ„2Fnℝ2β†’D↾ℝ2=absβˆ˜βˆ’β†Ύβ„2β†”βˆ€xβˆˆβ„βˆ€yβˆˆβ„xD↾ℝ2y=xabsβˆ˜βˆ’β†Ύβ„2y
25 14 23 24 mp2an ⊒D↾ℝ2=absβˆ˜βˆ’β†Ύβ„2β†”βˆ€xβˆˆβ„βˆ€yβˆˆβ„xD↾ℝ2y=xabsβˆ˜βˆ’β†Ύβ„2y
26 7 25 mpbir ⊒D↾ℝ2=absβˆ˜βˆ’β†Ύβ„2