Metamath Proof Explorer


Theorem xrsp0

Description: The poset 0 of the extended real numbers is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018) (Proof shortened by AV, 28-Sep-2020)

Ref Expression
Assertion xrsp0 −∞=0.𝑠*

Proof

Step Hyp Ref Expression
1 xrsex 𝑠*V
2 xrsbas *=Base𝑠*
3 eqid glb𝑠*=glb𝑠*
4 eqid 0.𝑠*=0.𝑠*
5 2 3 4 p0val 𝑠*V0.𝑠*=glb𝑠**
6 1 5 ax-mp 0.𝑠*=glb𝑠**
7 ssid **
8 xrslt <=<𝑠*
9 xrstos 𝑠*Toset
10 9 a1i **𝑠*Toset
11 id ****
12 2 8 10 11 tosglb **glb𝑠**=sup**<
13 7 12 ax-mp glb𝑠**=sup**<
14 xrinfm sup**<=−∞
15 6 13 14 3eqtrri −∞=0.𝑠*