Metamath Proof Explorer


Theorem yoncl

Description: The Yoneda embedding is a functor from the category to the category Q of presheaves on C . (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yonval.y Y=YonC
yonval.c φCCat
yonval.o O=oppCatC
yoncl.s S=SetCatU
yoncl.q Q=OFuncCatS
yoncl.u φUV
yoncl.h φranHom𝑓CU
Assertion yoncl φYCFuncQ

Proof

Step Hyp Ref Expression
1 yonval.y Y=YonC
2 yonval.c φCCat
3 yonval.o O=oppCatC
4 yoncl.s S=SetCatU
5 yoncl.q Q=OFuncCatS
6 yoncl.u φUV
7 yoncl.h φranHom𝑓CU
8 eqid HomFO=HomFO
9 1 2 3 8 yonval φY=COcurryFHomFO
10 eqid COcurryFHomFO=COcurryFHomFO
11 3 oppccat CCatOCat
12 2 11 syl φOCat
13 3 8 4 2 6 7 oppchofcl φHomFOC×cOFuncS
14 10 5 2 12 13 curfcl φCOcurryFHomFOCFuncQ
15 9 14 eqeltrd φYCFuncQ