Metamath Proof Explorer


Theorem zarcls0

Description: The closure of the identity ideal in the Zariski topology. Proposition 1.1.2(i) of EGA p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zarclsx.1 No typesetting found for |- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
zarcls0.1 No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |-
zarcls0.2 0 ˙ = 0 R
Assertion zarcls0 R Ring V 0 ˙ = P

Proof

Step Hyp Ref Expression
1 zarclsx.1 Could not format V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) : No typesetting found for |- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
2 zarcls0.1 Could not format P = ( PrmIdeal ` R ) : No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |-
3 zarcls0.2 0 ˙ = 0 R
4 1 a1i Could not format ( R e. Ring -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) : No typesetting found for |- ( R e. Ring -> V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) ) with typecode |-
5 simplr Could not format ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> i = { .0. } ) : No typesetting found for |- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> i = { .0. } ) with typecode |-
6 simpll Could not format ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> R e. Ring ) : No typesetting found for |- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> R e. Ring ) with typecode |-
7 prmidlidl Could not format ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) with typecode |-
8 6 7 sylancom Could not format ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> j e. ( LIdeal ` R ) ) with typecode |-
9 eqid LIdeal R = LIdeal R
10 9 3 lidl0cl R Ring j LIdeal R 0 ˙ j
11 6 8 10 syl2anc Could not format ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> .0. e. j ) : No typesetting found for |- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> .0. e. j ) with typecode |-
12 11 snssd Could not format ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> { .0. } C_ j ) : No typesetting found for |- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> { .0. } C_ j ) with typecode |-
13 5 12 eqsstrd Could not format ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> i C_ j ) : No typesetting found for |- ( ( ( R e. Ring /\ i = { .0. } ) /\ j e. ( PrmIdeal ` R ) ) -> i C_ j ) with typecode |-
14 13 ralrimiva Could not format ( ( R e. Ring /\ i = { .0. } ) -> A. j e. ( PrmIdeal ` R ) i C_ j ) : No typesetting found for |- ( ( R e. Ring /\ i = { .0. } ) -> A. j e. ( PrmIdeal ` R ) i C_ j ) with typecode |-
15 rabid2 Could not format ( ( PrmIdeal ` R ) = { j e. ( PrmIdeal ` R ) | i C_ j } <-> A. j e. ( PrmIdeal ` R ) i C_ j ) : No typesetting found for |- ( ( PrmIdeal ` R ) = { j e. ( PrmIdeal ` R ) | i C_ j } <-> A. j e. ( PrmIdeal ` R ) i C_ j ) with typecode |-
16 14 15 sylibr Could not format ( ( R e. Ring /\ i = { .0. } ) -> ( PrmIdeal ` R ) = { j e. ( PrmIdeal ` R ) | i C_ j } ) : No typesetting found for |- ( ( R e. Ring /\ i = { .0. } ) -> ( PrmIdeal ` R ) = { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
17 2 16 eqtr2id Could not format ( ( R e. Ring /\ i = { .0. } ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = P ) : No typesetting found for |- ( ( R e. Ring /\ i = { .0. } ) -> { j e. ( PrmIdeal ` R ) | i C_ j } = P ) with typecode |-
18 9 3 lidl0 R Ring 0 ˙ LIdeal R
19 2 fvexi P V
20 19 a1i R Ring P V
21 4 17 18 20 fvmptd R Ring V 0 ˙ = P