Metamath Proof Explorer


Theorem zorn2lem1

Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses zorn2lem.3 F=recsfVιvC|uC¬uwv
zorn2lem.4 C=zA|granfgRz
zorn2lem.5 D=zA|gFxgRz
Assertion zorn2lem1 xOnwWeADFxD

Proof

Step Hyp Ref Expression
1 zorn2lem.3 F=recsfVιvC|uC¬uwv
2 zorn2lem.4 C=zA|granfgRz
3 zorn2lem.5 D=zA|gFxgRz
4 1 tfr2 xOnFx=fVιvC|uC¬uwvFx
5 4 adantr xOnwWeADFx=fVιvC|uC¬uwvFx
6 1 tfr1 FFnOn
7 fnfun FFnOnFunF
8 6 7 ax-mp FunF
9 vex xV
10 resfunexg FunFxVFxV
11 8 9 10 mp2an FxV
12 rneq f=Fxranf=ranFx
13 df-ima Fx=ranFx
14 12 13 eqtr4di f=Fxranf=Fx
15 14 eleq2d f=FxgranfgFx
16 15 imbi1d f=FxgranfgRzgFxgRz
17 16 ralbidv2 f=FxgranfgRzgFxgRz
18 17 rabbidv f=FxzA|granfgRz=zA|gFxgRz
19 18 2 3 3eqtr4g f=FxC=D
20 19 eleq2d f=FxuCuD
21 20 imbi1d f=FxuC¬uwvuD¬uwv
22 21 ralbidv2 f=FxuC¬uwvuD¬uwv
23 19 22 riotaeqbidv f=FxιvC|uC¬uwv=ιvD|uD¬uwv
24 eqid fVιvC|uC¬uwv=fVιvC|uC¬uwv
25 riotaex ιvD|uD¬uwvV
26 23 24 25 fvmpt FxVfVιvC|uC¬uwvFx=ιvD|uD¬uwv
27 11 26 ax-mp fVιvC|uC¬uwvFx=ιvD|uD¬uwv
28 5 27 eqtrdi xOnwWeADFx=ιvD|uD¬uwv
29 simprl xOnwWeADwWeA
30 weso wWeAwOrA
31 30 ad2antrl xOnwWeADwOrA
32 vex wV
33 soex wOrAwVAV
34 31 32 33 sylancl xOnwWeADAV
35 3 34 rabexd xOnwWeADDV
36 3 ssrab3 DA
37 36 a1i xOnwWeADDA
38 simprr xOnwWeADD
39 wereu wWeADVDAD∃!vDuD¬uwv
40 29 35 37 38 39 syl13anc xOnwWeAD∃!vDuD¬uwv
41 riotacl ∃!vDuD¬uwvιvD|uD¬uwvD
42 40 41 syl xOnwWeADιvD|uD¬uwvD
43 28 42 eqeltrd xOnwWeADFxD