Description: The kernel of the homomorphism from the integers to a ring is injective if and only if the ring has characteristic 0 . (Contributed by Thierry Arnoux, 8-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zrhker.0 | |
|
zrhker.1 | |
||
zrhker.2 | |
||
Assertion | zrhchr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhker.0 | |
|
2 | zrhker.1 | |
|
3 | zrhker.2 | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 2 4 5 | zrhval2 | |
7 | f1eq1 | |
|
8 | 6 7 | syl | |
9 | ringgrp | |
|
10 | 1 5 | ringidcl | |
11 | eqid | |
|
12 | eqid | |
|
13 | 1 11 4 12 | odf1 | |
14 | 9 10 13 | syl2anc | |
15 | eqid | |
|
16 | 11 5 15 | chrval | |
17 | 16 | eqeq1i | |
18 | 17 | a1i | |
19 | 8 14 18 | 3bitr2rd | |