Metamath Proof Explorer


Theorem zrhchr

Description: The kernel of the homomorphism from the integers to a ring is injective if and only if the ring has characteristic 0 . (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zrhker.0 B=BaseR
zrhker.1 L=ℤRHomR
zrhker.2 0˙=0R
Assertion zrhchr RRingchrR=0L:1-1B

Proof

Step Hyp Ref Expression
1 zrhker.0 B=BaseR
2 zrhker.1 L=ℤRHomR
3 zrhker.2 0˙=0R
4 eqid R=R
5 eqid 1R=1R
6 2 4 5 zrhval2 RRingL=xxR1R
7 f1eq1 L=xxR1RL:1-1BxxR1R:1-1B
8 6 7 syl RRingL:1-1BxxR1R:1-1B
9 ringgrp RRingRGrp
10 1 5 ringidcl RRing1RB
11 eqid odR=odR
12 eqid xxR1R=xxR1R
13 1 11 4 12 odf1 RGrp1RBodR1R=0xxR1R:1-1B
14 9 10 13 syl2anc RRingodR1R=0xxR1R:1-1B
15 eqid chrR=chrR
16 11 5 15 chrval odR1R=chrR
17 16 eqeq1i odR1R=0chrR=0
18 17 a1i RRingodR1R=0chrR=0
19 8 14 18 3bitr2rd RRingchrR=0L:1-1B