Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
2 |
1
|
ackbij1lem8 |
⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) ) |
3 |
|
pweq |
⊢ ( 𝑎 = ∅ → 𝒫 𝑎 = 𝒫 ∅ ) |
4 |
3
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( card ‘ 𝒫 𝑎 ) = ( card ‘ 𝒫 ∅ ) ) |
5 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ∅ ) ) |
6 |
|
suceq |
⊢ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ∅ ) → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ ∅ ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑎 = ∅ → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ ∅ ) ) |
8 |
4 7
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( card ‘ 𝒫 𝑎 ) = suc ( 𝐹 ‘ 𝑎 ) ↔ ( card ‘ 𝒫 ∅ ) = suc ( 𝐹 ‘ ∅ ) ) ) |
9 |
|
pweq |
⊢ ( 𝑎 = 𝑏 → 𝒫 𝑎 = 𝒫 𝑏 ) |
10 |
9
|
fveq2d |
⊢ ( 𝑎 = 𝑏 → ( card ‘ 𝒫 𝑎 ) = ( card ‘ 𝒫 𝑏 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
12 |
|
suceq |
⊢ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ 𝑏 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝑎 = 𝑏 → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ 𝑏 ) ) |
14 |
10 13
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( card ‘ 𝒫 𝑎 ) = suc ( 𝐹 ‘ 𝑎 ) ↔ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) ) |
15 |
|
pweq |
⊢ ( 𝑎 = suc 𝑏 → 𝒫 𝑎 = 𝒫 suc 𝑏 ) |
16 |
15
|
fveq2d |
⊢ ( 𝑎 = suc 𝑏 → ( card ‘ 𝒫 𝑎 ) = ( card ‘ 𝒫 suc 𝑏 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ suc 𝑏 ) ) |
18 |
|
suceq |
⊢ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ suc 𝑏 ) → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑏 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝑎 = suc 𝑏 → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑏 ) ) |
20 |
16 19
|
eqeq12d |
⊢ ( 𝑎 = suc 𝑏 → ( ( card ‘ 𝒫 𝑎 ) = suc ( 𝐹 ‘ 𝑎 ) ↔ ( card ‘ 𝒫 suc 𝑏 ) = suc ( 𝐹 ‘ suc 𝑏 ) ) ) |
21 |
|
pweq |
⊢ ( 𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴 ) |
22 |
21
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( card ‘ 𝒫 𝑎 ) = ( card ‘ 𝒫 𝐴 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝐴 ) ) |
24 |
|
suceq |
⊢ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝐴 ) → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ 𝐴 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝑎 = 𝐴 → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ 𝐴 ) ) |
26 |
22 25
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( card ‘ 𝒫 𝑎 ) = suc ( 𝐹 ‘ 𝑎 ) ↔ ( card ‘ 𝒫 𝐴 ) = suc ( 𝐹 ‘ 𝐴 ) ) ) |
27 |
|
df-1o |
⊢ 1o = suc ∅ |
28 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
29 |
28
|
fveq2i |
⊢ ( card ‘ 𝒫 ∅ ) = ( card ‘ { ∅ } ) |
30 |
|
0ex |
⊢ ∅ ∈ V |
31 |
|
cardsn |
⊢ ( ∅ ∈ V → ( card ‘ { ∅ } ) = 1o ) |
32 |
30 31
|
ax-mp |
⊢ ( card ‘ { ∅ } ) = 1o |
33 |
29 32
|
eqtri |
⊢ ( card ‘ 𝒫 ∅ ) = 1o |
34 |
1
|
ackbij1lem13 |
⊢ ( 𝐹 ‘ ∅ ) = ∅ |
35 |
|
suceq |
⊢ ( ( 𝐹 ‘ ∅ ) = ∅ → suc ( 𝐹 ‘ ∅ ) = suc ∅ ) |
36 |
34 35
|
ax-mp |
⊢ suc ( 𝐹 ‘ ∅ ) = suc ∅ |
37 |
27 33 36
|
3eqtr4i |
⊢ ( card ‘ 𝒫 ∅ ) = suc ( 𝐹 ‘ ∅ ) |
38 |
|
oveq2 |
⊢ ( ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) → ( ( card ‘ 𝒫 𝑏 ) +o ( card ‘ 𝒫 𝑏 ) ) = ( ( card ‘ 𝒫 𝑏 ) +o suc ( 𝐹 ‘ 𝑏 ) ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( ( card ‘ 𝒫 𝑏 ) +o ( card ‘ 𝒫 𝑏 ) ) = ( ( card ‘ 𝒫 𝑏 ) +o suc ( 𝐹 ‘ 𝑏 ) ) ) |
40 |
|
ackbij1lem5 |
⊢ ( 𝑏 ∈ ω → ( card ‘ 𝒫 suc 𝑏 ) = ( ( card ‘ 𝒫 𝑏 ) +o ( card ‘ 𝒫 𝑏 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( card ‘ 𝒫 suc 𝑏 ) = ( ( card ‘ 𝒫 𝑏 ) +o ( card ‘ 𝒫 𝑏 ) ) ) |
42 |
|
df-suc |
⊢ suc 𝑏 = ( 𝑏 ∪ { 𝑏 } ) |
43 |
42
|
equncomi |
⊢ suc 𝑏 = ( { 𝑏 } ∪ 𝑏 ) |
44 |
43
|
fveq2i |
⊢ ( 𝐹 ‘ suc 𝑏 ) = ( 𝐹 ‘ ( { 𝑏 } ∪ 𝑏 ) ) |
45 |
|
ackbij1lem4 |
⊢ ( 𝑏 ∈ ω → { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ) |
47 |
|
ackbij1lem3 |
⊢ ( 𝑏 ∈ ω → 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ) |
49 |
|
incom |
⊢ ( { 𝑏 } ∩ 𝑏 ) = ( 𝑏 ∩ { 𝑏 } ) |
50 |
|
nnord |
⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) |
51 |
|
orddisj |
⊢ ( Ord 𝑏 → ( 𝑏 ∩ { 𝑏 } ) = ∅ ) |
52 |
50 51
|
syl |
⊢ ( 𝑏 ∈ ω → ( 𝑏 ∩ { 𝑏 } ) = ∅ ) |
53 |
49 52
|
eqtrid |
⊢ ( 𝑏 ∈ ω → ( { 𝑏 } ∩ 𝑏 ) = ∅ ) |
54 |
53
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( { 𝑏 } ∩ 𝑏 ) = ∅ ) |
55 |
1
|
ackbij1lem9 |
⊢ ( ( { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( { 𝑏 } ∩ 𝑏 ) = ∅ ) → ( 𝐹 ‘ ( { 𝑏 } ∪ 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
56 |
46 48 54 55
|
syl3anc |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( { 𝑏 } ∪ 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
57 |
1
|
ackbij1lem8 |
⊢ ( 𝑏 ∈ ω → ( 𝐹 ‘ { 𝑏 } ) = ( card ‘ 𝒫 𝑏 ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ { 𝑏 } ) = ( card ‘ 𝒫 𝑏 ) ) |
59 |
58
|
oveq1d |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ 𝑏 ) ) = ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
60 |
56 59
|
eqtrd |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( { 𝑏 } ∪ 𝑏 ) ) = ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
61 |
44 60
|
eqtrid |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ suc 𝑏 ) = ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
62 |
|
suceq |
⊢ ( ( 𝐹 ‘ suc 𝑏 ) = ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) → suc ( 𝐹 ‘ suc 𝑏 ) = suc ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
63 |
61 62
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → suc ( 𝐹 ‘ suc 𝑏 ) = suc ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
64 |
|
nnfi |
⊢ ( 𝑏 ∈ ω → 𝑏 ∈ Fin ) |
65 |
|
pwfi |
⊢ ( 𝑏 ∈ Fin ↔ 𝒫 𝑏 ∈ Fin ) |
66 |
64 65
|
sylib |
⊢ ( 𝑏 ∈ ω → 𝒫 𝑏 ∈ Fin ) |
67 |
66
|
adantr |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → 𝒫 𝑏 ∈ Fin ) |
68 |
|
ficardom |
⊢ ( 𝒫 𝑏 ∈ Fin → ( card ‘ 𝒫 𝑏 ) ∈ ω ) |
69 |
67 68
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( card ‘ 𝒫 𝑏 ) ∈ ω ) |
70 |
1
|
ackbij1lem10 |
⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
71 |
70
|
ffvelrni |
⊢ ( 𝑏 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ 𝑏 ) ∈ ω ) |
72 |
48 71
|
syl |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ω ) |
73 |
|
nnasuc |
⊢ ( ( ( card ‘ 𝒫 𝑏 ) ∈ ω ∧ ( 𝐹 ‘ 𝑏 ) ∈ ω ) → ( ( card ‘ 𝒫 𝑏 ) +o suc ( 𝐹 ‘ 𝑏 ) ) = suc ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
74 |
69 72 73
|
syl2anc |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( ( card ‘ 𝒫 𝑏 ) +o suc ( 𝐹 ‘ 𝑏 ) ) = suc ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
75 |
63 74
|
eqtr4d |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → suc ( 𝐹 ‘ suc 𝑏 ) = ( ( card ‘ 𝒫 𝑏 ) +o suc ( 𝐹 ‘ 𝑏 ) ) ) |
76 |
39 41 75
|
3eqtr4d |
⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( card ‘ 𝒫 suc 𝑏 ) = suc ( 𝐹 ‘ suc 𝑏 ) ) |
77 |
76
|
ex |
⊢ ( 𝑏 ∈ ω → ( ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) → ( card ‘ 𝒫 suc 𝑏 ) = suc ( 𝐹 ‘ suc 𝑏 ) ) ) |
78 |
8 14 20 26 37 77
|
finds |
⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) = suc ( 𝐹 ‘ 𝐴 ) ) |
79 |
2 78
|
eqtrd |
⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = suc ( 𝐹 ‘ 𝐴 ) ) |