| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2 |
⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) |
| 2 |
|
pw2eng |
⊢ ( suc 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ( 2o ↑m suc 𝐴 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ( 2o ↑m suc 𝐴 ) ) |
| 4 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
| 5 |
4
|
oveq2i |
⊢ ( 2o ↑m suc 𝐴 ) = ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) |
| 6 |
|
elex |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ V ) |
| 7 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 8 |
7
|
a1i |
⊢ ( 𝐴 ∈ ω → { 𝐴 } ∈ V ) |
| 9 |
|
2onn |
⊢ 2o ∈ ω |
| 10 |
9
|
elexi |
⊢ 2o ∈ V |
| 11 |
10
|
a1i |
⊢ ( 𝐴 ∈ ω → 2o ∈ V ) |
| 12 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
| 13 |
|
orddisj |
⊢ ( Ord 𝐴 → ( 𝐴 ∩ { 𝐴 } ) = ∅ ) |
| 14 |
12 13
|
syl |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ∩ { 𝐴 } ) = ∅ ) |
| 15 |
|
mapunen |
⊢ ( ( ( 𝐴 ∈ V ∧ { 𝐴 } ∈ V ∧ 2o ∈ V ) ∧ ( 𝐴 ∩ { 𝐴 } ) = ∅ ) → ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ) |
| 16 |
6 8 11 14 15
|
syl31anc |
⊢ ( 𝐴 ∈ ω → ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ) |
| 17 |
|
ovex |
⊢ ( 2o ↑m 𝐴 ) ∈ V |
| 18 |
17
|
enref |
⊢ ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐴 ) |
| 19 |
|
2on |
⊢ 2o ∈ On |
| 20 |
19
|
a1i |
⊢ ( 𝐴 ∈ ω → 2o ∈ On ) |
| 21 |
|
id |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ ω ) |
| 22 |
20 21
|
mapsnend |
⊢ ( 𝐴 ∈ ω → ( 2o ↑m { 𝐴 } ) ≈ 2o ) |
| 23 |
|
xpen |
⊢ ( ( ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐴 ) ∧ ( 2o ↑m { 𝐴 } ) ≈ 2o ) → ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) |
| 24 |
18 22 23
|
sylancr |
⊢ ( 𝐴 ∈ ω → ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) |
| 25 |
|
entr |
⊢ ( ( ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ∧ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) → ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) |
| 26 |
16 24 25
|
syl2anc |
⊢ ( 𝐴 ∈ ω → ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) |
| 27 |
5 26
|
eqbrtrid |
⊢ ( 𝐴 ∈ ω → ( 2o ↑m suc 𝐴 ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) |
| 28 |
17 10
|
xpcomen |
⊢ ( ( 2o ↑m 𝐴 ) × 2o ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) |
| 29 |
|
entr |
⊢ ( ( ( 2o ↑m suc 𝐴 ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ∧ ( ( 2o ↑m 𝐴 ) × 2o ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ) → ( 2o ↑m suc 𝐴 ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ) |
| 30 |
27 28 29
|
sylancl |
⊢ ( 𝐴 ∈ ω → ( 2o ↑m suc 𝐴 ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ) |
| 31 |
10
|
enref |
⊢ 2o ≈ 2o |
| 32 |
|
pw2eng |
⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) |
| 33 |
|
xpen |
⊢ ( ( 2o ≈ 2o ∧ 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) → ( 2o × 𝒫 𝐴 ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ) |
| 34 |
31 32 33
|
sylancr |
⊢ ( 𝐴 ∈ ω → ( 2o × 𝒫 𝐴 ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ) |
| 35 |
34
|
ensymd |
⊢ ( 𝐴 ∈ ω → ( 2o × ( 2o ↑m 𝐴 ) ) ≈ ( 2o × 𝒫 𝐴 ) ) |
| 36 |
|
entr |
⊢ ( ( ( 2o ↑m suc 𝐴 ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ∧ ( 2o × ( 2o ↑m 𝐴 ) ) ≈ ( 2o × 𝒫 𝐴 ) ) → ( 2o ↑m suc 𝐴 ) ≈ ( 2o × 𝒫 𝐴 ) ) |
| 37 |
30 35 36
|
syl2anc |
⊢ ( 𝐴 ∈ ω → ( 2o ↑m suc 𝐴 ) ≈ ( 2o × 𝒫 𝐴 ) ) |
| 38 |
|
entr |
⊢ ( ( 𝒫 suc 𝐴 ≈ ( 2o ↑m suc 𝐴 ) ∧ ( 2o ↑m suc 𝐴 ) ≈ ( 2o × 𝒫 𝐴 ) ) → 𝒫 suc 𝐴 ≈ ( 2o × 𝒫 𝐴 ) ) |
| 39 |
3 37 38
|
syl2anc |
⊢ ( 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ( 2o × 𝒫 𝐴 ) ) |
| 40 |
|
xp2dju |
⊢ ( 2o × 𝒫 𝐴 ) = ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) |
| 41 |
39 40
|
breqtrdi |
⊢ ( 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 42 |
|
nnfi |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) |
| 43 |
|
pwfi |
⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) |
| 44 |
42 43
|
sylib |
⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin ) |
| 45 |
|
ficardid |
⊢ ( 𝒫 𝐴 ∈ Fin → ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
| 46 |
44 45
|
syl |
⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
| 47 |
|
djuen |
⊢ ( ( ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ∧ ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) → ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 48 |
46 46 47
|
syl2anc |
⊢ ( 𝐴 ∈ ω → ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 49 |
48
|
ensymd |
⊢ ( 𝐴 ∈ ω → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) |
| 50 |
|
entr |
⊢ ( ( 𝒫 suc 𝐴 ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ∧ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) → 𝒫 suc 𝐴 ≈ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) |
| 51 |
41 49 50
|
syl2anc |
⊢ ( 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) |
| 52 |
|
carden2b |
⊢ ( 𝒫 suc 𝐴 ≈ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) → ( card ‘ 𝒫 suc 𝐴 ) = ( card ‘ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) ) |
| 53 |
51 52
|
syl |
⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 suc 𝐴 ) = ( card ‘ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) ) |
| 54 |
|
ficardom |
⊢ ( 𝒫 𝐴 ∈ Fin → ( card ‘ 𝒫 𝐴 ) ∈ ω ) |
| 55 |
44 54
|
syl |
⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) ∈ ω ) |
| 56 |
|
nnadju |
⊢ ( ( ( card ‘ 𝒫 𝐴 ) ∈ ω ∧ ( card ‘ 𝒫 𝐴 ) ∈ ω ) → ( card ‘ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) = ( ( card ‘ 𝒫 𝐴 ) +o ( card ‘ 𝒫 𝐴 ) ) ) |
| 57 |
55 55 56
|
syl2anc |
⊢ ( 𝐴 ∈ ω → ( card ‘ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) = ( ( card ‘ 𝒫 𝐴 ) +o ( card ‘ 𝒫 𝐴 ) ) ) |
| 58 |
53 57
|
eqtrd |
⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 suc 𝐴 ) = ( ( card ‘ 𝒫 𝐴 ) +o ( card ‘ 𝒫 𝐴 ) ) ) |