Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
2 |
1
|
ackbij1lem8 |
|- ( A e. _om -> ( F ` { A } ) = ( card ` ~P A ) ) |
3 |
|
pweq |
|- ( a = (/) -> ~P a = ~P (/) ) |
4 |
3
|
fveq2d |
|- ( a = (/) -> ( card ` ~P a ) = ( card ` ~P (/) ) ) |
5 |
|
fveq2 |
|- ( a = (/) -> ( F ` a ) = ( F ` (/) ) ) |
6 |
|
suceq |
|- ( ( F ` a ) = ( F ` (/) ) -> suc ( F ` a ) = suc ( F ` (/) ) ) |
7 |
5 6
|
syl |
|- ( a = (/) -> suc ( F ` a ) = suc ( F ` (/) ) ) |
8 |
4 7
|
eqeq12d |
|- ( a = (/) -> ( ( card ` ~P a ) = suc ( F ` a ) <-> ( card ` ~P (/) ) = suc ( F ` (/) ) ) ) |
9 |
|
pweq |
|- ( a = b -> ~P a = ~P b ) |
10 |
9
|
fveq2d |
|- ( a = b -> ( card ` ~P a ) = ( card ` ~P b ) ) |
11 |
|
fveq2 |
|- ( a = b -> ( F ` a ) = ( F ` b ) ) |
12 |
|
suceq |
|- ( ( F ` a ) = ( F ` b ) -> suc ( F ` a ) = suc ( F ` b ) ) |
13 |
11 12
|
syl |
|- ( a = b -> suc ( F ` a ) = suc ( F ` b ) ) |
14 |
10 13
|
eqeq12d |
|- ( a = b -> ( ( card ` ~P a ) = suc ( F ` a ) <-> ( card ` ~P b ) = suc ( F ` b ) ) ) |
15 |
|
pweq |
|- ( a = suc b -> ~P a = ~P suc b ) |
16 |
15
|
fveq2d |
|- ( a = suc b -> ( card ` ~P a ) = ( card ` ~P suc b ) ) |
17 |
|
fveq2 |
|- ( a = suc b -> ( F ` a ) = ( F ` suc b ) ) |
18 |
|
suceq |
|- ( ( F ` a ) = ( F ` suc b ) -> suc ( F ` a ) = suc ( F ` suc b ) ) |
19 |
17 18
|
syl |
|- ( a = suc b -> suc ( F ` a ) = suc ( F ` suc b ) ) |
20 |
16 19
|
eqeq12d |
|- ( a = suc b -> ( ( card ` ~P a ) = suc ( F ` a ) <-> ( card ` ~P suc b ) = suc ( F ` suc b ) ) ) |
21 |
|
pweq |
|- ( a = A -> ~P a = ~P A ) |
22 |
21
|
fveq2d |
|- ( a = A -> ( card ` ~P a ) = ( card ` ~P A ) ) |
23 |
|
fveq2 |
|- ( a = A -> ( F ` a ) = ( F ` A ) ) |
24 |
|
suceq |
|- ( ( F ` a ) = ( F ` A ) -> suc ( F ` a ) = suc ( F ` A ) ) |
25 |
23 24
|
syl |
|- ( a = A -> suc ( F ` a ) = suc ( F ` A ) ) |
26 |
22 25
|
eqeq12d |
|- ( a = A -> ( ( card ` ~P a ) = suc ( F ` a ) <-> ( card ` ~P A ) = suc ( F ` A ) ) ) |
27 |
|
df-1o |
|- 1o = suc (/) |
28 |
|
pw0 |
|- ~P (/) = { (/) } |
29 |
28
|
fveq2i |
|- ( card ` ~P (/) ) = ( card ` { (/) } ) |
30 |
|
0ex |
|- (/) e. _V |
31 |
|
cardsn |
|- ( (/) e. _V -> ( card ` { (/) } ) = 1o ) |
32 |
30 31
|
ax-mp |
|- ( card ` { (/) } ) = 1o |
33 |
29 32
|
eqtri |
|- ( card ` ~P (/) ) = 1o |
34 |
1
|
ackbij1lem13 |
|- ( F ` (/) ) = (/) |
35 |
|
suceq |
|- ( ( F ` (/) ) = (/) -> suc ( F ` (/) ) = suc (/) ) |
36 |
34 35
|
ax-mp |
|- suc ( F ` (/) ) = suc (/) |
37 |
27 33 36
|
3eqtr4i |
|- ( card ` ~P (/) ) = suc ( F ` (/) ) |
38 |
|
oveq2 |
|- ( ( card ` ~P b ) = suc ( F ` b ) -> ( ( card ` ~P b ) +o ( card ` ~P b ) ) = ( ( card ` ~P b ) +o suc ( F ` b ) ) ) |
39 |
38
|
adantl |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( ( card ` ~P b ) +o ( card ` ~P b ) ) = ( ( card ` ~P b ) +o suc ( F ` b ) ) ) |
40 |
|
ackbij1lem5 |
|- ( b e. _om -> ( card ` ~P suc b ) = ( ( card ` ~P b ) +o ( card ` ~P b ) ) ) |
41 |
40
|
adantr |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( card ` ~P suc b ) = ( ( card ` ~P b ) +o ( card ` ~P b ) ) ) |
42 |
|
df-suc |
|- suc b = ( b u. { b } ) |
43 |
42
|
equncomi |
|- suc b = ( { b } u. b ) |
44 |
43
|
fveq2i |
|- ( F ` suc b ) = ( F ` ( { b } u. b ) ) |
45 |
|
ackbij1lem4 |
|- ( b e. _om -> { b } e. ( ~P _om i^i Fin ) ) |
46 |
45
|
adantr |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> { b } e. ( ~P _om i^i Fin ) ) |
47 |
|
ackbij1lem3 |
|- ( b e. _om -> b e. ( ~P _om i^i Fin ) ) |
48 |
47
|
adantr |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> b e. ( ~P _om i^i Fin ) ) |
49 |
|
incom |
|- ( { b } i^i b ) = ( b i^i { b } ) |
50 |
|
nnord |
|- ( b e. _om -> Ord b ) |
51 |
|
orddisj |
|- ( Ord b -> ( b i^i { b } ) = (/) ) |
52 |
50 51
|
syl |
|- ( b e. _om -> ( b i^i { b } ) = (/) ) |
53 |
49 52
|
eqtrid |
|- ( b e. _om -> ( { b } i^i b ) = (/) ) |
54 |
53
|
adantr |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( { b } i^i b ) = (/) ) |
55 |
1
|
ackbij1lem9 |
|- ( ( { b } e. ( ~P _om i^i Fin ) /\ b e. ( ~P _om i^i Fin ) /\ ( { b } i^i b ) = (/) ) -> ( F ` ( { b } u. b ) ) = ( ( F ` { b } ) +o ( F ` b ) ) ) |
56 |
46 48 54 55
|
syl3anc |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( F ` ( { b } u. b ) ) = ( ( F ` { b } ) +o ( F ` b ) ) ) |
57 |
1
|
ackbij1lem8 |
|- ( b e. _om -> ( F ` { b } ) = ( card ` ~P b ) ) |
58 |
57
|
adantr |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( F ` { b } ) = ( card ` ~P b ) ) |
59 |
58
|
oveq1d |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( ( F ` { b } ) +o ( F ` b ) ) = ( ( card ` ~P b ) +o ( F ` b ) ) ) |
60 |
56 59
|
eqtrd |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( F ` ( { b } u. b ) ) = ( ( card ` ~P b ) +o ( F ` b ) ) ) |
61 |
44 60
|
eqtrid |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( F ` suc b ) = ( ( card ` ~P b ) +o ( F ` b ) ) ) |
62 |
|
suceq |
|- ( ( F ` suc b ) = ( ( card ` ~P b ) +o ( F ` b ) ) -> suc ( F ` suc b ) = suc ( ( card ` ~P b ) +o ( F ` b ) ) ) |
63 |
61 62
|
syl |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> suc ( F ` suc b ) = suc ( ( card ` ~P b ) +o ( F ` b ) ) ) |
64 |
|
nnfi |
|- ( b e. _om -> b e. Fin ) |
65 |
|
pwfi |
|- ( b e. Fin <-> ~P b e. Fin ) |
66 |
64 65
|
sylib |
|- ( b e. _om -> ~P b e. Fin ) |
67 |
66
|
adantr |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ~P b e. Fin ) |
68 |
|
ficardom |
|- ( ~P b e. Fin -> ( card ` ~P b ) e. _om ) |
69 |
67 68
|
syl |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( card ` ~P b ) e. _om ) |
70 |
1
|
ackbij1lem10 |
|- F : ( ~P _om i^i Fin ) --> _om |
71 |
70
|
ffvelrni |
|- ( b e. ( ~P _om i^i Fin ) -> ( F ` b ) e. _om ) |
72 |
48 71
|
syl |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( F ` b ) e. _om ) |
73 |
|
nnasuc |
|- ( ( ( card ` ~P b ) e. _om /\ ( F ` b ) e. _om ) -> ( ( card ` ~P b ) +o suc ( F ` b ) ) = suc ( ( card ` ~P b ) +o ( F ` b ) ) ) |
74 |
69 72 73
|
syl2anc |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( ( card ` ~P b ) +o suc ( F ` b ) ) = suc ( ( card ` ~P b ) +o ( F ` b ) ) ) |
75 |
63 74
|
eqtr4d |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> suc ( F ` suc b ) = ( ( card ` ~P b ) +o suc ( F ` b ) ) ) |
76 |
39 41 75
|
3eqtr4d |
|- ( ( b e. _om /\ ( card ` ~P b ) = suc ( F ` b ) ) -> ( card ` ~P suc b ) = suc ( F ` suc b ) ) |
77 |
76
|
ex |
|- ( b e. _om -> ( ( card ` ~P b ) = suc ( F ` b ) -> ( card ` ~P suc b ) = suc ( F ` suc b ) ) ) |
78 |
8 14 20 26 37 77
|
finds |
|- ( A e. _om -> ( card ` ~P A ) = suc ( F ` A ) ) |
79 |
2 78
|
eqtrd |
|- ( A e. _om -> ( F ` { A } ) = suc ( F ` A ) ) |