| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp11 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | simp13 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 3 |  | simp22 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 4 |  | simp23 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 5 |  | simp33 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 6 |  | simp31 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 7 |  | simp21 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 8 |  | simp12 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 9 |  | simp1rr | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) | 
						
							| 11 |  | simp2ll | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝐷  Btwn  〈 𝐴 ,  𝑐 〉 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝐷  Btwn  〈 𝐴 ,  𝑐 〉 ) | 
						
							| 13 | 1 8 2 3 4 10 12 | btwnexch3and | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝐷  Btwn  〈 𝐵 ,  𝑐 〉 ) | 
						
							| 14 |  | simp2rl | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 ) | 
						
							| 16 |  | simp3rl | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝑑  Btwn  〈 𝐴 ,  𝑋 〉 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝑑  Btwn  〈 𝐴 ,  𝑋 〉 ) | 
						
							| 18 | 1 8 7 6 5 15 17 | btwnexch3and | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝑑  Btwn  〈 𝐶 ,  𝑋 〉 ) | 
						
							| 19 | 1 6 7 5 18 | btwncomand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝑑  Btwn  〈 𝑋 ,  𝐶 〉 ) | 
						
							| 20 |  | simp3rr | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) | 
						
							| 22 | 1 6 5 3 2 21 | cgrcomand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝐷 ,  𝐵 〉 Cgr 〈 𝑑 ,  𝑋 〉 ) | 
						
							| 23 | 1 3 2 6 5 22 | cgrcomlrand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝐵 ,  𝐷 〉 Cgr 〈 𝑋 ,  𝑑 〉 ) | 
						
							| 24 |  | simp2lr | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 26 |  | simp2rr | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 28 | 1 7 6 7 3 27 | cgrcomland | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝑑 ,  𝐶 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 29 | 1 3 4 6 7 7 3 25 28 | cgrtr3and | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝑑 ,  𝐶 〉 ) | 
						
							| 30 | 1 2 3 4 5 6 7 13 19 23 29 | cgrextendand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑋  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑋 〉  ∧  〈 𝑑 ,  𝑋 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝐵 ,  𝑐 〉 Cgr 〈 𝑋 ,  𝐶 〉 ) |