| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
| 2 |
|
inex1g |
⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
| 3 |
|
infpwfidom |
⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∈ V → 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) ) |
| 4 |
1 2 3
|
3syl |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) ) |
| 5 |
|
inex1g |
⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ dom card ) ∈ V ) |
| 6 |
1 5
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ∩ dom card ) ∈ V ) |
| 7 |
|
finnum |
⊢ ( 𝑥 ∈ Fin → 𝑥 ∈ dom card ) |
| 8 |
7
|
ssriv |
⊢ Fin ⊆ dom card |
| 9 |
|
sslin |
⊢ ( Fin ⊆ dom card → ( 𝒫 𝐴 ∩ Fin ) ⊆ ( 𝒫 𝐴 ∩ dom card ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( 𝒫 𝐴 ∩ Fin ) ⊆ ( 𝒫 𝐴 ∩ dom card ) |
| 11 |
|
ssdomg |
⊢ ( ( 𝒫 𝐴 ∩ dom card ) ∈ V → ( ( 𝒫 𝐴 ∩ Fin ) ⊆ ( 𝒫 𝐴 ∩ dom card ) → ( 𝒫 𝐴 ∩ Fin ) ≼ ( 𝒫 𝐴 ∩ dom card ) ) ) |
| 12 |
6 10 11
|
mpisyl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ∩ Fin ) ≼ ( 𝒫 𝐴 ∩ dom card ) ) |
| 13 |
|
domtr |
⊢ ( ( 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝒫 𝐴 ∩ Fin ) ≼ ( 𝒫 𝐴 ∩ dom card ) ) → 𝐴 ≼ ( 𝒫 𝐴 ∩ dom card ) ) |
| 14 |
4 12 13
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ ( 𝒫 𝐴 ∩ dom card ) ) |
| 15 |
|
eqid |
⊢ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } |
| 16 |
15
|
fpwwecbv |
⊢ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑓 ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } |
| 17 |
|
eqid |
⊢ ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } = ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } |
| 18 |
|
eqid |
⊢ ( ◡ ( { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ‘ ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ) “ { ( 𝑓 ‘ ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ) } ) = ( ◡ ( { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ‘ ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ) “ { ( 𝑓 ‘ ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ) } ) |
| 19 |
16 17 18
|
canthnumlem |
⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) |
| 20 |
|
f1of1 |
⊢ ( 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1-onto→ 𝐴 → 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) |
| 21 |
19 20
|
nsyl |
⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1-onto→ 𝐴 ) |
| 22 |
21
|
nexdv |
⊢ ( 𝐴 ∈ 𝑉 → ¬ ∃ 𝑓 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1-onto→ 𝐴 ) |
| 23 |
|
ensym |
⊢ ( 𝐴 ≈ ( 𝒫 𝐴 ∩ dom card ) → ( 𝒫 𝐴 ∩ dom card ) ≈ 𝐴 ) |
| 24 |
|
bren |
⊢ ( ( 𝒫 𝐴 ∩ dom card ) ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1-onto→ 𝐴 ) |
| 25 |
23 24
|
sylib |
⊢ ( 𝐴 ≈ ( 𝒫 𝐴 ∩ dom card ) → ∃ 𝑓 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1-onto→ 𝐴 ) |
| 26 |
22 25
|
nsyl |
⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐴 ≈ ( 𝒫 𝐴 ∩ dom card ) ) |
| 27 |
|
brsdom |
⊢ ( 𝐴 ≺ ( 𝒫 𝐴 ∩ dom card ) ↔ ( 𝐴 ≼ ( 𝒫 𝐴 ∩ dom card ) ∧ ¬ 𝐴 ≈ ( 𝒫 𝐴 ∩ dom card ) ) ) |
| 28 |
14 26 27
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ ( 𝒫 𝐴 ∩ dom card ) ) |