| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							canthwe.1 | 
							⊢ 𝑂  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							canthwe.2 | 
							⊢ 𝑊  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 ) )  ∧  ( 𝑟  We  𝑥  ∧  ∀ 𝑦  ∈  𝑥 [ ( ◡ 𝑟  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑟  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) }  | 
						
						
							| 3 | 
							
								
							 | 
							canthwe.3 | 
							⊢ 𝐵  =  ∪  dom  𝑊  | 
						
						
							| 4 | 
							
								
							 | 
							canthwe.4 | 
							⊢ 𝐶  =  ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ 𝐵  =  𝐵  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑊 ‘ 𝐵 )  =  ( 𝑊 ‘ 𝐵 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							pm3.2i | 
							⊢ ( 𝐵  =  𝐵  ∧  ( 𝑊 ‘ 𝐵 )  =  ( 𝑊 ‘ 𝐵 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  𝐴  ∈  𝑉 )  | 
						
						
							| 9 | 
							
								
							 | 
							df-ov | 
							⊢ ( 𝑥 𝐹 𝑟 )  =  ( 𝐹 ‘ 〈 𝑥 ,  𝑟 〉 )  | 
						
						
							| 10 | 
							
								
							 | 
							f1f | 
							⊢ ( 𝐹 : 𝑂 –1-1→ 𝐴  →  𝐹 : 𝑂 ⟶ 𝐴 )  | 
						
						
							| 11 | 
							
								10
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  𝐹 : 𝑂 ⟶ 𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							opabidw | 
							⊢ ( 〈 𝑥 ,  𝑟 〉  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) }  ↔  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sylibr | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  〈 𝑥 ,  𝑟 〉  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) } )  | 
						
						
							| 15 | 
							
								14 1
							 | 
							eleqtrrdi | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  〈 𝑥 ,  𝑟 〉  ∈  𝑂 )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝐹 ‘ 〈 𝑥 ,  𝑟 〉 )  ∈  𝐴 )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							eqeltrid | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								2 8 17 3
							 | 
							fpwwe2 | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 )  ∧  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  ∈  𝐵 )  ↔  ( 𝐵  =  𝐵  ∧  ( 𝑊 ‘ 𝐵 )  =  ( 𝑊 ‘ 𝐵 ) ) ) )  | 
						
						
							| 19 | 
							
								7 18
							 | 
							mpbiri | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 )  ∧  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  ∈  𝐵 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							simprd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  ∈  𝐵 )  | 
						
						
							| 21 | 
							
								4 4
							 | 
							xpeq12i | 
							⊢ ( 𝐶  ×  𝐶 )  =  ( ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } )  ×  ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ineq2i | 
							⊢ ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  =  ( ( 𝑊 ‘ 𝐵 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } )  ×  ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) )  | 
						
						
							| 23 | 
							
								4 22
							 | 
							oveq12i | 
							⊢ ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) )  =  ( ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } )  ×  ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) )  | 
						
						
							| 24 | 
							
								19
							 | 
							simpld | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) )  | 
						
						
							| 25 | 
							
								2 8 24
							 | 
							fpwwe2lem3 | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  ∧  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  ∈  𝐵 )  →  ( ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } )  ×  ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) )  =  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) )  | 
						
						
							| 26 | 
							
								20 25
							 | 
							mpdan | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } )  ×  ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) )  =  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							eqtrid | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) )  =  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							df-ov | 
							⊢ ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) )  =  ( 𝐹 ‘ 〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉 )  | 
						
						
							| 29 | 
							
								
							 | 
							df-ov | 
							⊢ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  =  ( 𝐹 ‘ 〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉 )  | 
						
						
							| 30 | 
							
								27 28 29
							 | 
							3eqtr3g | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝐹 ‘ 〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉 )  =  ( 𝐹 ‘ 〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  𝐹 : 𝑂 –1-1→ 𝐴 )  | 
						
						
							| 32 | 
							
								
							 | 
							cnvimass | 
							⊢ ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } )  ⊆  dom  ( 𝑊 ‘ 𝐵 )  | 
						
						
							| 33 | 
							
								2 8
							 | 
							fpwwe2lem2 | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  ( 𝑊 ‘ 𝐵 )  ⊆  ( 𝐵  ×  𝐵 ) )  ∧  ( ( 𝑊 ‘ 𝐵 )  We  𝐵  ∧  ∀ 𝑦  ∈  𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) ) )  | 
						
						
							| 34 | 
							
								24 33
							 | 
							mpbid | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( ( 𝐵  ⊆  𝐴  ∧  ( 𝑊 ‘ 𝐵 )  ⊆  ( 𝐵  ×  𝐵 ) )  ∧  ( ( 𝑊 ‘ 𝐵 )  We  𝐵  ∧  ∀ 𝑦  ∈  𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							simpld | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝐵  ⊆  𝐴  ∧  ( 𝑊 ‘ 𝐵 )  ⊆  ( 𝐵  ×  𝐵 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							simprd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝑊 ‘ 𝐵 )  ⊆  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							dmss | 
							⊢ ( ( 𝑊 ‘ 𝐵 )  ⊆  ( 𝐵  ×  𝐵 )  →  dom  ( 𝑊 ‘ 𝐵 )  ⊆  dom  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  dom  ( 𝑊 ‘ 𝐵 )  ⊆  dom  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							dmxpss | 
							⊢ dom  ( 𝐵  ×  𝐵 )  ⊆  𝐵  | 
						
						
							| 40 | 
							
								38 39
							 | 
							sstrdi | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  dom  ( 𝑊 ‘ 𝐵 )  ⊆  𝐵 )  | 
						
						
							| 41 | 
							
								32 40
							 | 
							sstrid | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } )  ⊆  𝐵 )  | 
						
						
							| 42 | 
							
								4 41
							 | 
							eqsstrid | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  𝐶  ⊆  𝐵 )  | 
						
						
							| 43 | 
							
								35
							 | 
							simpld | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  𝐵  ⊆  𝐴 )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							sstrd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  𝐶  ⊆  𝐴 )  | 
						
						
							| 45 | 
							
								
							 | 
							inss2 | 
							⊢ ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  ⊆  ( 𝐶  ×  𝐶 )  | 
						
						
							| 46 | 
							
								45
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  ⊆  ( 𝐶  ×  𝐶 ) )  | 
						
						
							| 47 | 
							
								34
							 | 
							simprd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( ( 𝑊 ‘ 𝐵 )  We  𝐵  ∧  ∀ 𝑦  ∈  𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							simpld | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝑊 ‘ 𝐵 )  We  𝐵 )  | 
						
						
							| 49 | 
							
								
							 | 
							wess | 
							⊢ ( 𝐶  ⊆  𝐵  →  ( ( 𝑊 ‘ 𝐵 )  We  𝐵  →  ( 𝑊 ‘ 𝐵 )  We  𝐶 ) )  | 
						
						
							| 50 | 
							
								42 48 49
							 | 
							sylc | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝑊 ‘ 𝐵 )  We  𝐶 )  | 
						
						
							| 51 | 
							
								
							 | 
							weinxp | 
							⊢ ( ( 𝑊 ‘ 𝐵 )  We  𝐶  ↔  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  We  𝐶 )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							sylib | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  We  𝐶 )  | 
						
						
							| 53 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝑊 ‘ 𝐵 )  ∈  V  | 
						
						
							| 54 | 
							
								53
							 | 
							cnvex | 
							⊢ ◡ ( 𝑊 ‘ 𝐵 )  ∈  V  | 
						
						
							| 55 | 
							
								54
							 | 
							imaex | 
							⊢ ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } )  ∈  V  | 
						
						
							| 56 | 
							
								4 55
							 | 
							eqeltri | 
							⊢ 𝐶  ∈  V  | 
						
						
							| 57 | 
							
								53
							 | 
							inex1 | 
							⊢ ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  ∈  V  | 
						
						
							| 58 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑥  =  𝐶  ∧  𝑟  =  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) )  →  𝑥  =  𝐶 )  | 
						
						
							| 59 | 
							
								58
							 | 
							sseq1d | 
							⊢ ( ( 𝑥  =  𝐶  ∧  𝑟  =  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) )  →  ( 𝑥  ⊆  𝐴  ↔  𝐶  ⊆  𝐴 ) )  | 
						
						
							| 60 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑥  =  𝐶  ∧  𝑟  =  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) )  →  𝑟  =  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) )  | 
						
						
							| 61 | 
							
								58
							 | 
							sqxpeqd | 
							⊢ ( ( 𝑥  =  𝐶  ∧  𝑟  =  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) )  →  ( 𝑥  ×  𝑥 )  =  ( 𝐶  ×  𝐶 ) )  | 
						
						
							| 62 | 
							
								60 61
							 | 
							sseq12d | 
							⊢ ( ( 𝑥  =  𝐶  ∧  𝑟  =  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) )  →  ( 𝑟  ⊆  ( 𝑥  ×  𝑥 )  ↔  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  ⊆  ( 𝐶  ×  𝐶 ) ) )  | 
						
						
							| 63 | 
							
								60 58
							 | 
							weeq12d | 
							⊢ ( ( 𝑥  =  𝐶  ∧  𝑟  =  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) )  →  ( 𝑟  We  𝑥  ↔  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  We  𝐶 ) )  | 
						
						
							| 64 | 
							
								59 62 63
							 | 
							3anbi123d | 
							⊢ ( ( 𝑥  =  𝐶  ∧  𝑟  =  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) )  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 )  ↔  ( 𝐶  ⊆  𝐴  ∧  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  ⊆  ( 𝐶  ×  𝐶 )  ∧  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  We  𝐶 ) ) )  | 
						
						
							| 65 | 
							
								56 57 64
							 | 
							opelopaba | 
							⊢ ( 〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) }  ↔  ( 𝐶  ⊆  𝐴  ∧  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  ⊆  ( 𝐶  ×  𝐶 )  ∧  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) )  We  𝐶 ) )  | 
						
						
							| 66 | 
							
								44 46 52 65
							 | 
							syl3anbrc | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) } )  | 
						
						
							| 67 | 
							
								66 1
							 | 
							eleqtrrdi | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉  ∈  𝑂 )  | 
						
						
							| 68 | 
							
								8 43
							 | 
							ssexd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  𝐵  ∈  V )  | 
						
						
							| 69 | 
							
								53
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝑊 ‘ 𝐵 )  ∈  V )  | 
						
						
							| 70 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑟  =  ( 𝑊 ‘ 𝐵 ) )  →  𝑥  =  𝐵 )  | 
						
						
							| 71 | 
							
								70
							 | 
							sseq1d | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑟  =  ( 𝑊 ‘ 𝐵 ) )  →  ( 𝑥  ⊆  𝐴  ↔  𝐵  ⊆  𝐴 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑟  =  ( 𝑊 ‘ 𝐵 ) )  →  𝑟  =  ( 𝑊 ‘ 𝐵 ) )  | 
						
						
							| 73 | 
							
								70
							 | 
							sqxpeqd | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑟  =  ( 𝑊 ‘ 𝐵 ) )  →  ( 𝑥  ×  𝑥 )  =  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 74 | 
							
								72 73
							 | 
							sseq12d | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑟  =  ( 𝑊 ‘ 𝐵 ) )  →  ( 𝑟  ⊆  ( 𝑥  ×  𝑥 )  ↔  ( 𝑊 ‘ 𝐵 )  ⊆  ( 𝐵  ×  𝐵 ) ) )  | 
						
						
							| 75 | 
							
								72 70
							 | 
							weeq12d | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑟  =  ( 𝑊 ‘ 𝐵 ) )  →  ( 𝑟  We  𝑥  ↔  ( 𝑊 ‘ 𝐵 )  We  𝐵 ) )  | 
						
						
							| 76 | 
							
								71 74 75
							 | 
							3anbi123d | 
							⊢ ( ( 𝑥  =  𝐵  ∧  𝑟  =  ( 𝑊 ‘ 𝐵 ) )  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 )  ↔  ( 𝐵  ⊆  𝐴  ∧  ( 𝑊 ‘ 𝐵 )  ⊆  ( 𝐵  ×  𝐵 )  ∧  ( 𝑊 ‘ 𝐵 )  We  𝐵 ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							opelopabga | 
							⊢ ( ( 𝐵  ∈  V  ∧  ( 𝑊 ‘ 𝐵 )  ∈  V )  →  ( 〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) }  ↔  ( 𝐵  ⊆  𝐴  ∧  ( 𝑊 ‘ 𝐵 )  ⊆  ( 𝐵  ×  𝐵 )  ∧  ( 𝑊 ‘ 𝐵 )  We  𝐵 ) ) )  | 
						
						
							| 78 | 
							
								68 69 77
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) }  ↔  ( 𝐵  ⊆  𝐴  ∧  ( 𝑊 ‘ 𝐵 )  ⊆  ( 𝐵  ×  𝐵 )  ∧  ( 𝑊 ‘ 𝐵 )  We  𝐵 ) ) )  | 
						
						
							| 79 | 
							
								43 36 48 78
							 | 
							mpbir3and | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) } )  | 
						
						
							| 80 | 
							
								79 1
							 | 
							eleqtrrdi | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉  ∈  𝑂 )  | 
						
						
							| 81 | 
							
								
							 | 
							f1fveq | 
							⊢ ( ( 𝐹 : 𝑂 –1-1→ 𝐴  ∧  ( 〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉  ∈  𝑂  ∧  〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉  ∈  𝑂 ) )  →  ( ( 𝐹 ‘ 〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉 )  =  ( 𝐹 ‘ 〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉 )  ↔  〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉  =  〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉 ) )  | 
						
						
							| 82 | 
							
								31 67 80 81
							 | 
							syl12anc | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( ( 𝐹 ‘ 〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉 )  =  ( 𝐹 ‘ 〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉 )  ↔  〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉  =  〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉 ) )  | 
						
						
							| 83 | 
							
								30 82
							 | 
							mpbid | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉  =  〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉 )  | 
						
						
							| 84 | 
							
								56 57
							 | 
							opth1 | 
							⊢ ( 〈 𝐶 ,  ( ( 𝑊 ‘ 𝐵 )  ∩  ( 𝐶  ×  𝐶 ) ) 〉  =  〈 𝐵 ,  ( 𝑊 ‘ 𝐵 ) 〉  →  𝐶  =  𝐵 )  | 
						
						
							| 85 | 
							
								83 84
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  𝐶  =  𝐵 )  | 
						
						
							| 86 | 
							
								20 85
							 | 
							eleqtrrd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  ∈  𝐶 )  | 
						
						
							| 87 | 
							
								86 4
							 | 
							eleqtrdi | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  ∈  ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) )  | 
						
						
							| 88 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  ∈  V  | 
						
						
							| 89 | 
							
								88
							 | 
							eliniseg | 
							⊢ ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  ∈  𝐵  →  ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  ∈  ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } )  ↔  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) )  | 
						
						
							| 90 | 
							
								20 89
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  ∈  ( ◡ ( 𝑊 ‘ 𝐵 )  “  { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } )  ↔  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) )  | 
						
						
							| 91 | 
							
								87 90
							 | 
							mpbid | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							weso | 
							⊢ ( ( 𝑊 ‘ 𝐵 )  We  𝐵  →  ( 𝑊 ‘ 𝐵 )  Or  𝐵 )  | 
						
						
							| 93 | 
							
								48 92
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ( 𝑊 ‘ 𝐵 )  Or  𝐵 )  | 
						
						
							| 94 | 
							
								
							 | 
							sonr | 
							⊢ ( ( ( 𝑊 ‘ 𝐵 )  Or  𝐵  ∧  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) )  ∈  𝐵 )  →  ¬  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) )  | 
						
						
							| 95 | 
							
								93 20 94
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝑂 –1-1→ 𝐴 )  →  ¬  ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) )  | 
						
						
							| 96 | 
							
								91 95
							 | 
							pm2.65da | 
							⊢ ( 𝐴  ∈  𝑉  →  ¬  𝐹 : 𝑂 –1-1→ 𝐴 )  |