| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							canthwe.1 | 
							⊢ 𝑂  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 )  →  𝑥  ⊆  𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							velpw | 
							⊢ ( 𝑥  ∈  𝒫  𝐴  ↔  𝑥  ⊆  𝐴 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylibr | 
							⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 )  →  𝑥  ∈  𝒫  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 )  →  𝑟  ⊆  ( 𝑥  ×  𝑥 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ⊆  𝐴 )  →  ( 𝑥  ×  𝑥 )  ⊆  ( 𝐴  ×  𝐴 ) )  | 
						
						
							| 7 | 
							
								2 2 6
							 | 
							syl2anc | 
							⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 )  →  ( 𝑥  ×  𝑥 )  ⊆  ( 𝐴  ×  𝐴 ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							sstrd | 
							⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 )  →  𝑟  ⊆  ( 𝐴  ×  𝐴 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							velpw | 
							⊢ ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐴 )  ↔  𝑟  ⊆  ( 𝐴  ×  𝐴 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylibr | 
							⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 )  →  𝑟  ∈  𝒫  ( 𝐴  ×  𝐴 ) )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							jca | 
							⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 )  →  ( 𝑥  ∈  𝒫  𝐴  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐴 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ssopab2i | 
							⊢ { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) }  ⊆  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ∈  𝒫  𝐴  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐴 ) ) }  | 
						
						
							| 13 | 
							
								
							 | 
							df-xp | 
							⊢ ( 𝒫  𝐴  ×  𝒫  ( 𝐴  ×  𝐴 ) )  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ∈  𝒫  𝐴  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐴 ) ) }  | 
						
						
							| 14 | 
							
								12 1 13
							 | 
							3sstr4i | 
							⊢ 𝑂  ⊆  ( 𝒫  𝐴  ×  𝒫  ( 𝐴  ×  𝐴 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							pwexg | 
							⊢ ( 𝐴  ∈  𝑉  →  𝒫  𝐴  ∈  V )  | 
						
						
							| 16 | 
							
								
							 | 
							sqxpexg | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ×  𝐴 )  ∈  V )  | 
						
						
							| 17 | 
							
								16
							 | 
							pwexd | 
							⊢ ( 𝐴  ∈  𝑉  →  𝒫  ( 𝐴  ×  𝐴 )  ∈  V )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							xpexd | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 𝒫  𝐴  ×  𝒫  ( 𝐴  ×  𝐴 ) )  ∈  V )  | 
						
						
							| 19 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( 𝑂  ⊆  ( 𝒫  𝐴  ×  𝒫  ( 𝐴  ×  𝐴 ) )  ∧  ( 𝒫  𝐴  ×  𝒫  ( 𝐴  ×  𝐴 ) )  ∈  V )  →  𝑂  ∈  V )  | 
						
						
							| 20 | 
							
								14 18 19
							 | 
							sylancr | 
							⊢ ( 𝐴  ∈  𝑉  →  𝑂  ∈  V )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑢  ∈  𝐴 )  →  𝑢  ∈  𝐴 )  | 
						
						
							| 22 | 
							
								21
							 | 
							snssd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑢  ∈  𝐴 )  →  { 𝑢 }  ⊆  𝐴 )  | 
						
						
							| 23 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  ( { 𝑢 }  ×  { 𝑢 } )  | 
						
						
							| 24 | 
							
								23
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑢  ∈  𝐴 )  →  ∅  ⊆  ( { 𝑢 }  ×  { 𝑢 } ) )  | 
						
						
							| 25 | 
							
								
							 | 
							rel0 | 
							⊢ Rel  ∅  | 
						
						
							| 26 | 
							
								
							 | 
							br0 | 
							⊢ ¬  𝑢 ∅ 𝑢  | 
						
						
							| 27 | 
							
								
							 | 
							wesn | 
							⊢ ( Rel  ∅  →  ( ∅  We  { 𝑢 }  ↔  ¬  𝑢 ∅ 𝑢 ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							mpbiri | 
							⊢ ( Rel  ∅  →  ∅  We  { 𝑢 } )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							mp1i | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑢  ∈  𝐴 )  →  ∅  We  { 𝑢 } )  | 
						
						
							| 30 | 
							
								
							 | 
							vsnex | 
							⊢ { 𝑢 }  ∈  V  | 
						
						
							| 31 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 32 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑥  =  { 𝑢 }  ∧  𝑟  =  ∅ )  →  𝑥  =  { 𝑢 } )  | 
						
						
							| 33 | 
							
								32
							 | 
							sseq1d | 
							⊢ ( ( 𝑥  =  { 𝑢 }  ∧  𝑟  =  ∅ )  →  ( 𝑥  ⊆  𝐴  ↔  { 𝑢 }  ⊆  𝐴 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑥  =  { 𝑢 }  ∧  𝑟  =  ∅ )  →  𝑟  =  ∅ )  | 
						
						
							| 35 | 
							
								32
							 | 
							sqxpeqd | 
							⊢ ( ( 𝑥  =  { 𝑢 }  ∧  𝑟  =  ∅ )  →  ( 𝑥  ×  𝑥 )  =  ( { 𝑢 }  ×  { 𝑢 } ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							sseq12d | 
							⊢ ( ( 𝑥  =  { 𝑢 }  ∧  𝑟  =  ∅ )  →  ( 𝑟  ⊆  ( 𝑥  ×  𝑥 )  ↔  ∅  ⊆  ( { 𝑢 }  ×  { 𝑢 } ) ) )  | 
						
						
							| 37 | 
							
								34 32
							 | 
							weeq12d | 
							⊢ ( ( 𝑥  =  { 𝑢 }  ∧  𝑟  =  ∅ )  →  ( 𝑟  We  𝑥  ↔  ∅  We  { 𝑢 } ) )  | 
						
						
							| 38 | 
							
								33 36 37
							 | 
							3anbi123d | 
							⊢ ( ( 𝑥  =  { 𝑢 }  ∧  𝑟  =  ∅ )  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 )  ↔  ( { 𝑢 }  ⊆  𝐴  ∧  ∅  ⊆  ( { 𝑢 }  ×  { 𝑢 } )  ∧  ∅  We  { 𝑢 } ) ) )  | 
						
						
							| 39 | 
							
								30 31 38
							 | 
							opelopaba | 
							⊢ ( 〈 { 𝑢 } ,  ∅ 〉  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) }  ↔  ( { 𝑢 }  ⊆  𝐴  ∧  ∅  ⊆  ( { 𝑢 }  ×  { 𝑢 } )  ∧  ∅  We  { 𝑢 } ) )  | 
						
						
							| 40 | 
							
								22 24 29 39
							 | 
							syl3anbrc | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑢  ∈  𝐴 )  →  〈 { 𝑢 } ,  ∅ 〉  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) } )  | 
						
						
							| 41 | 
							
								40 1
							 | 
							eleqtrrdi | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑢  ∈  𝐴 )  →  〈 { 𝑢 } ,  ∅ 〉  ∈  𝑂 )  | 
						
						
							| 42 | 
							
								41
							 | 
							ex | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 𝑢  ∈  𝐴  →  〈 { 𝑢 } ,  ∅ 〉  ∈  𝑂 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							eqid | 
							⊢ ∅  =  ∅  | 
						
						
							| 44 | 
							
								
							 | 
							vsnex | 
							⊢ { 𝑣 }  ∈  V  | 
						
						
							| 45 | 
							
								44 31
							 | 
							opth2 | 
							⊢ ( 〈 { 𝑢 } ,  ∅ 〉  =  〈 { 𝑣 } ,  ∅ 〉  ↔  ( { 𝑢 }  =  { 𝑣 }  ∧  ∅  =  ∅ ) )  | 
						
						
							| 46 | 
							
								43 45
							 | 
							mpbiran2 | 
							⊢ ( 〈 { 𝑢 } ,  ∅ 〉  =  〈 { 𝑣 } ,  ∅ 〉  ↔  { 𝑢 }  =  { 𝑣 } )  | 
						
						
							| 47 | 
							
								
							 | 
							sneqbg | 
							⊢ ( 𝑢  ∈  V  →  ( { 𝑢 }  =  { 𝑣 }  ↔  𝑢  =  𝑣 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							elv | 
							⊢ ( { 𝑢 }  =  { 𝑣 }  ↔  𝑢  =  𝑣 )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							bitri | 
							⊢ ( 〈 { 𝑢 } ,  ∅ 〉  =  〈 { 𝑣 } ,  ∅ 〉  ↔  𝑢  =  𝑣 )  | 
						
						
							| 50 | 
							
								49
							 | 
							2a1i | 
							⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( 〈 { 𝑢 } ,  ∅ 〉  =  〈 { 𝑣 } ,  ∅ 〉  ↔  𝑢  =  𝑣 ) ) )  | 
						
						
							| 51 | 
							
								42 50
							 | 
							dom2d | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 𝑂  ∈  V  →  𝐴  ≼  𝑂 ) )  | 
						
						
							| 52 | 
							
								20 51
							 | 
							mpd | 
							⊢ ( 𝐴  ∈  𝑉  →  𝐴  ≼  𝑂 )  | 
						
						
							| 53 | 
							
								
							 | 
							eqid | 
							⊢ { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) }  =  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) }  | 
						
						
							| 54 | 
							
								53
							 | 
							fpwwe2cbv | 
							⊢ { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) }  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 ) )  ∧  ( 𝑟  We  𝑥  ∧  ∀ 𝑦  ∈  𝑥 [ ( ◡ 𝑟  “  { 𝑦 } )  /  𝑤 ] ( 𝑤 𝑓 ( 𝑟  ∩  ( 𝑤  ×  𝑤 ) ) )  =  𝑦 ) ) }  | 
						
						
							| 55 | 
							
								
							 | 
							eqid | 
							⊢ ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) }  =  ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) }  | 
						
						
							| 56 | 
							
								
							 | 
							eqid | 
							⊢ ( ◡ ( { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) } ‘ ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) } )  “  { ( ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) } 𝑓 ( { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) } ‘ ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) } ) ) } )  =  ( ◡ ( { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) } ‘ ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) } )  “  { ( ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) } 𝑓 ( { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) } ‘ ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑣 ] ( 𝑣 𝑓 ( 𝑠  ∩  ( 𝑣  ×  𝑣 ) ) )  =  𝑧 ) ) } ) ) } )  | 
						
						
							| 57 | 
							
								1 54 55 56
							 | 
							canthwelem | 
							⊢ ( 𝐴  ∈  𝑉  →  ¬  𝑓 : 𝑂 –1-1→ 𝐴 )  | 
						
						
							| 58 | 
							
								
							 | 
							f1of1 | 
							⊢ ( 𝑓 : 𝑂 –1-1-onto→ 𝐴  →  𝑓 : 𝑂 –1-1→ 𝐴 )  | 
						
						
							| 59 | 
							
								57 58
							 | 
							nsyl | 
							⊢ ( 𝐴  ∈  𝑉  →  ¬  𝑓 : 𝑂 –1-1-onto→ 𝐴 )  | 
						
						
							| 60 | 
							
								59
							 | 
							nexdv | 
							⊢ ( 𝐴  ∈  𝑉  →  ¬  ∃ 𝑓 𝑓 : 𝑂 –1-1-onto→ 𝐴 )  | 
						
						
							| 61 | 
							
								
							 | 
							ensym | 
							⊢ ( 𝐴  ≈  𝑂  →  𝑂  ≈  𝐴 )  | 
						
						
							| 62 | 
							
								
							 | 
							bren | 
							⊢ ( 𝑂  ≈  𝐴  ↔  ∃ 𝑓 𝑓 : 𝑂 –1-1-onto→ 𝐴 )  | 
						
						
							| 63 | 
							
								61 62
							 | 
							sylib | 
							⊢ ( 𝐴  ≈  𝑂  →  ∃ 𝑓 𝑓 : 𝑂 –1-1-onto→ 𝐴 )  | 
						
						
							| 64 | 
							
								60 63
							 | 
							nsyl | 
							⊢ ( 𝐴  ∈  𝑉  →  ¬  𝐴  ≈  𝑂 )  | 
						
						
							| 65 | 
							
								
							 | 
							brsdom | 
							⊢ ( 𝐴  ≺  𝑂  ↔  ( 𝐴  ≼  𝑂  ∧  ¬  𝐴  ≈  𝑂 ) )  | 
						
						
							| 66 | 
							
								52 64 65
							 | 
							sylanbrc | 
							⊢ ( 𝐴  ∈  𝑉  →  𝐴  ≺  𝑂 )  |