Metamath Proof Explorer


Theorem canthnum

Description: The set of well-orderable subsets of a set A strictly dominates A . A stronger form of canth2 . Corollary 1.4(a) of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 19-May-2015)

Ref Expression
Assertion canthnum A V A 𝒫 A dom card

Proof

Step Hyp Ref Expression
1 pwexg A V 𝒫 A V
2 inex1g 𝒫 A V 𝒫 A Fin V
3 infpwfidom 𝒫 A Fin V A 𝒫 A Fin
4 1 2 3 3syl A V A 𝒫 A Fin
5 inex1g 𝒫 A V 𝒫 A dom card V
6 1 5 syl A V 𝒫 A dom card V
7 finnum x Fin x dom card
8 7 ssriv Fin dom card
9 sslin Fin dom card 𝒫 A Fin 𝒫 A dom card
10 8 9 ax-mp 𝒫 A Fin 𝒫 A dom card
11 ssdomg 𝒫 A dom card V 𝒫 A Fin 𝒫 A dom card 𝒫 A Fin 𝒫 A dom card
12 6 10 11 mpisyl A V 𝒫 A Fin 𝒫 A dom card
13 domtr A 𝒫 A Fin 𝒫 A Fin 𝒫 A dom card A 𝒫 A dom card
14 4 12 13 syl2anc A V A 𝒫 A dom card
15 eqid x r | x A r x × x r We x y x f r -1 y = y = x r | x A r x × x r We x y x f r -1 y = y
16 15 fpwwecbv x r | x A r x × x r We x y x f r -1 y = y = a s | a A s a × a s We a z a f s -1 z = z
17 eqid dom x r | x A r x × x r We x y x f r -1 y = y = dom x r | x A r x × x r We x y x f r -1 y = y
18 eqid x r | x A r x × x r We x y x f r -1 y = y dom x r | x A r x × x r We x y x f r -1 y = y -1 f dom x r | x A r x × x r We x y x f r -1 y = y = x r | x A r x × x r We x y x f r -1 y = y dom x r | x A r x × x r We x y x f r -1 y = y -1 f dom x r | x A r x × x r We x y x f r -1 y = y
19 16 17 18 canthnumlem A V ¬ f : 𝒫 A dom card 1-1 A
20 f1of1 f : 𝒫 A dom card 1-1 onto A f : 𝒫 A dom card 1-1 A
21 19 20 nsyl A V ¬ f : 𝒫 A dom card 1-1 onto A
22 21 nexdv A V ¬ f f : 𝒫 A dom card 1-1 onto A
23 ensym A 𝒫 A dom card 𝒫 A dom card A
24 bren 𝒫 A dom card A f f : 𝒫 A dom card 1-1 onto A
25 23 24 sylib A 𝒫 A dom card f f : 𝒫 A dom card 1-1 onto A
26 22 25 nsyl A V ¬ A 𝒫 A dom card
27 brsdom A 𝒫 A dom card A 𝒫 A dom card ¬ A 𝒫 A dom card
28 14 26 27 sylanbrc A V A 𝒫 A dom card