Metamath Proof Explorer


Theorem canthnumlem

Description: Lemma for canthnum . (Contributed by Mario Carneiro, 19-May-2015)

Ref Expression
Hypotheses canth4.1 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 ( 𝐹 ‘ ( 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) }
canth4.2 𝐵 = dom 𝑊
canth4.3 𝐶 = ( ( 𝑊𝐵 ) “ { ( 𝐹𝐵 ) } )
Assertion canthnumlem ( 𝐴𝑉 → ¬ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 )

Proof

Step Hyp Ref Expression
1 canth4.1 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 ( 𝐹 ‘ ( 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) }
2 canth4.2 𝐵 = dom 𝑊
3 canth4.3 𝐶 = ( ( 𝑊𝐵 ) “ { ( 𝐹𝐵 ) } )
4 f1f ( 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 )
5 ssid ( 𝒫 𝐴 ∩ dom card ) ⊆ ( 𝒫 𝐴 ∩ dom card )
6 1 2 3 canth4 ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ ( 𝒫 𝐴 ∩ dom card ) ) → ( 𝐵𝐴𝐶𝐵 ∧ ( 𝐹𝐵 ) = ( 𝐹𝐶 ) ) )
7 5 6 mp3an3 ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 ) → ( 𝐵𝐴𝐶𝐵 ∧ ( 𝐹𝐵 ) = ( 𝐹𝐶 ) ) )
8 4 7 sylan2 ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ( 𝐵𝐴𝐶𝐵 ∧ ( 𝐹𝐵 ) = ( 𝐹𝐶 ) ) )
9 8 simp3d ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ( 𝐹𝐵 ) = ( 𝐹𝐶 ) )
10 simpr ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 )
11 8 simp1d ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐵𝐴 )
12 elpw2g ( 𝐴𝑉 → ( 𝐵 ∈ 𝒫 𝐴𝐵𝐴 ) )
13 12 adantr ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ( 𝐵 ∈ 𝒫 𝐴𝐵𝐴 ) )
14 11 13 mpbird ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐵 ∈ 𝒫 𝐴 )
15 eqid 𝐵 = 𝐵
16 eqid ( 𝑊𝐵 ) = ( 𝑊𝐵 )
17 15 16 pm3.2i ( 𝐵 = 𝐵 ∧ ( 𝑊𝐵 ) = ( 𝑊𝐵 ) )
18 simpl ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐴𝑉 )
19 10 4 syl ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 )
20 19 ffvelrnda ( ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ dom card ) ) → ( 𝐹𝑥 ) ∈ 𝐴 )
21 1 18 20 2 fpwwe ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ( ( 𝐵 𝑊 ( 𝑊𝐵 ) ∧ ( 𝐹𝐵 ) ∈ 𝐵 ) ↔ ( 𝐵 = 𝐵 ∧ ( 𝑊𝐵 ) = ( 𝑊𝐵 ) ) ) )
22 17 21 mpbiri ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ( 𝐵 𝑊 ( 𝑊𝐵 ) ∧ ( 𝐹𝐵 ) ∈ 𝐵 ) )
23 22 simpld ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐵 𝑊 ( 𝑊𝐵 ) )
24 1 18 fpwwelem ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ( 𝐵 𝑊 ( 𝑊𝐵 ) ↔ ( ( 𝐵𝐴 ∧ ( 𝑊𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊𝐵 ) We 𝐵 ∧ ∀ 𝑦𝐵 ( 𝐹 ‘ ( ( 𝑊𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) ) )
25 23 24 mpbid ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ( ( 𝐵𝐴 ∧ ( 𝑊𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊𝐵 ) We 𝐵 ∧ ∀ 𝑦𝐵 ( 𝐹 ‘ ( ( 𝑊𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) )
26 25 simprld ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ( 𝑊𝐵 ) We 𝐵 )
27 fvex ( 𝑊𝐵 ) ∈ V
28 weeq1 ( 𝑟 = ( 𝑊𝐵 ) → ( 𝑟 We 𝐵 ↔ ( 𝑊𝐵 ) We 𝐵 ) )
29 27 28 spcev ( ( 𝑊𝐵 ) We 𝐵 → ∃ 𝑟 𝑟 We 𝐵 )
30 26 29 syl ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ∃ 𝑟 𝑟 We 𝐵 )
31 ween ( 𝐵 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐵 )
32 30 31 sylibr ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐵 ∈ dom card )
33 14 32 elind ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐵 ∈ ( 𝒫 𝐴 ∩ dom card ) )
34 8 simp2d ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐶𝐵 )
35 34 pssssd ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐶𝐵 )
36 35 11 sstrd ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐶𝐴 )
37 elpw2g ( 𝐴𝑉 → ( 𝐶 ∈ 𝒫 𝐴𝐶𝐴 ) )
38 37 adantr ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ( 𝐶 ∈ 𝒫 𝐴𝐶𝐴 ) )
39 36 38 mpbird ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐶 ∈ 𝒫 𝐴 )
40 ssnum ( ( 𝐵 ∈ dom card ∧ 𝐶𝐵 ) → 𝐶 ∈ dom card )
41 32 35 40 syl2anc ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐶 ∈ dom card )
42 39 41 elind ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐶 ∈ ( 𝒫 𝐴 ∩ dom card ) )
43 f1fveq ( ( 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ∧ ( 𝐵 ∈ ( 𝒫 𝐴 ∩ dom card ) ∧ 𝐶 ∈ ( 𝒫 𝐴 ∩ dom card ) ) ) → ( ( 𝐹𝐵 ) = ( 𝐹𝐶 ) ↔ 𝐵 = 𝐶 ) )
44 10 33 42 43 syl12anc ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ( ( 𝐹𝐵 ) = ( 𝐹𝐶 ) ↔ 𝐵 = 𝐶 ) )
45 9 44 mpbid ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐵 = 𝐶 )
46 34 pssned ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐶𝐵 )
47 46 necomd ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → 𝐵𝐶 )
48 47 neneqd ( ( 𝐴𝑉𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 ) → ¬ 𝐵 = 𝐶 )
49 45 48 pm2.65da ( 𝐴𝑉 → ¬ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1𝐴 )