Metamath Proof Explorer


Theorem cdleme20c

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, second line. D , F , Y , G represent s_2, f(s), t_2, f(t). (Contributed by NM, 15-Nov-2012)

Ref Expression
Hypotheses cdleme19.l = ( le ‘ 𝐾 )
cdleme19.j = ( join ‘ 𝐾 )
cdleme19.m = ( meet ‘ 𝐾 )
cdleme19.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme19.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme19.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme19.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
cdleme19.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
cdleme19.d 𝐷 = ( ( 𝑅 𝑆 ) 𝑊 )
cdleme19.y 𝑌 = ( ( 𝑅 𝑇 ) 𝑊 )
cdleme20.v 𝑉 = ( ( 𝑆 𝑇 ) 𝑊 )
Assertion cdleme20c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐷 𝑌 ) = ( ( ( 𝑅 𝑆 ) 𝑇 ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdleme19.l = ( le ‘ 𝐾 )
2 cdleme19.j = ( join ‘ 𝐾 )
3 cdleme19.m = ( meet ‘ 𝐾 )
4 cdleme19.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme19.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme19.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme19.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
8 cdleme19.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
9 cdleme19.d 𝐷 = ( ( 𝑅 𝑆 ) 𝑊 )
10 cdleme19.y 𝑌 = ( ( 𝑅 𝑇 ) 𝑊 )
11 cdleme20.v 𝑉 = ( ( 𝑆 𝑇 ) 𝑊 )
12 9 10 oveq12i ( 𝐷 𝑌 ) = ( ( ( 𝑅 𝑆 ) 𝑊 ) ( ( 𝑅 𝑇 ) 𝑊 ) )
13 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
14 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅𝐴 )
15 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑆𝐴 )
16 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
17 16 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴 ) → ( 𝑅 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
18 13 14 15 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
19 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑊𝐻 )
20 16 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
21 19 20 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
22 1 2 4 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴 ) → 𝑅 ( 𝑅 𝑆 ) )
23 13 14 15 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅 ( 𝑅 𝑆 ) )
24 16 1 2 3 4 atmod2i1 ( ( 𝐾 ∈ HL ∧ ( 𝑅𝐴 ∧ ( 𝑅 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑅 ( 𝑅 𝑆 ) ) → ( ( ( 𝑅 𝑆 ) 𝑊 ) 𝑅 ) = ( ( 𝑅 𝑆 ) ( 𝑊 𝑅 ) ) )
25 13 14 18 21 23 24 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( ( 𝑅 𝑆 ) 𝑊 ) 𝑅 ) = ( ( 𝑅 𝑆 ) ( 𝑊 𝑅 ) ) )
26 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
27 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
28 1 2 27 4 5 lhpjat1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝑊 𝑅 ) = ( 1. ‘ 𝐾 ) )
29 13 19 26 28 syl21anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑊 𝑅 ) = ( 1. ‘ 𝐾 ) )
30 29 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 𝑆 ) ( 𝑊 𝑅 ) ) = ( ( 𝑅 𝑆 ) ( 1. ‘ 𝐾 ) ) )
31 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
32 13 31 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ OL )
33 16 3 27 olm11 ( ( 𝐾 ∈ OL ∧ ( 𝑅 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 𝑆 ) ( 1. ‘ 𝐾 ) ) = ( 𝑅 𝑆 ) )
34 32 18 33 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 𝑆 ) ( 1. ‘ 𝐾 ) ) = ( 𝑅 𝑆 ) )
35 25 30 34 3eqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅 𝑆 ) = ( ( ( 𝑅 𝑆 ) 𝑊 ) 𝑅 ) )
36 35 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 𝑆 ) 𝑇 ) = ( ( ( ( 𝑅 𝑆 ) 𝑊 ) 𝑅 ) 𝑇 ) )
37 simp22r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑆 𝑊 )
38 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅 ( 𝑃 𝑄 ) )
39 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
40 eqid ( ( 𝑅 𝑆 ) 𝑊 ) = ( ( 𝑅 𝑆 ) 𝑊 )
41 1 2 3 4 5 40 cdlemeda ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 𝑆 ) 𝑊 ) ∈ 𝐴 )
42 13 19 15 37 14 38 39 41 syl223anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 𝑆 ) 𝑊 ) ∈ 𝐴 )
43 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑇𝐴 )
44 2 4 hlatjass ( ( 𝐾 ∈ HL ∧ ( ( ( 𝑅 𝑆 ) 𝑊 ) ∈ 𝐴𝑅𝐴𝑇𝐴 ) ) → ( ( ( ( 𝑅 𝑆 ) 𝑊 ) 𝑅 ) 𝑇 ) = ( ( ( 𝑅 𝑆 ) 𝑊 ) ( 𝑅 𝑇 ) ) )
45 13 42 14 43 44 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( ( ( 𝑅 𝑆 ) 𝑊 ) 𝑅 ) 𝑇 ) = ( ( ( 𝑅 𝑆 ) 𝑊 ) ( 𝑅 𝑇 ) ) )
46 36 45 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 𝑆 ) 𝑇 ) = ( ( ( 𝑅 𝑆 ) 𝑊 ) ( 𝑅 𝑇 ) ) )
47 46 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( ( 𝑅 𝑆 ) 𝑇 ) 𝑊 ) = ( ( ( ( 𝑅 𝑆 ) 𝑊 ) ( 𝑅 𝑇 ) ) 𝑊 ) )
48 16 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑇𝐴 ) → ( 𝑅 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
49 13 14 43 48 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
50 13 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ Lat )
51 16 1 3 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑅 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 𝑆 ) 𝑊 ) 𝑊 )
52 50 18 21 51 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 𝑆 ) 𝑊 ) 𝑊 )
53 16 1 2 3 4 atmod1i1 ( ( 𝐾 ∈ HL ∧ ( ( ( 𝑅 𝑆 ) 𝑊 ) ∈ 𝐴 ∧ ( 𝑅 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ ( ( 𝑅 𝑆 ) 𝑊 ) 𝑊 ) → ( ( ( 𝑅 𝑆 ) 𝑊 ) ( ( 𝑅 𝑇 ) 𝑊 ) ) = ( ( ( ( 𝑅 𝑆 ) 𝑊 ) ( 𝑅 𝑇 ) ) 𝑊 ) )
54 13 42 49 21 52 53 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( ( 𝑅 𝑆 ) 𝑊 ) ( ( 𝑅 𝑇 ) 𝑊 ) ) = ( ( ( ( 𝑅 𝑆 ) 𝑊 ) ( 𝑅 𝑇 ) ) 𝑊 ) )
55 47 54 eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( ( 𝑅 𝑆 ) 𝑇 ) 𝑊 ) = ( ( ( 𝑅 𝑆 ) 𝑊 ) ( ( 𝑅 𝑇 ) 𝑊 ) ) )
56 12 55 eqtr4id ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐷 𝑌 ) = ( ( ( 𝑅 𝑆 ) 𝑇 ) 𝑊 ) )