Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk5.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemk5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemk5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemk5.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk5.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemk5.z |
⊢ 𝑍 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) |
10 |
|
cdlemk5.y |
⊢ 𝑌 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) ) |
11 |
|
cdlemk5.x |
⊢ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) |
12 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → 𝐺 = ( I ↾ 𝐵 ) ) |
13 |
1 6 7
|
idltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
15 |
12 14
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → 𝐺 ∈ 𝑇 ) |
16 |
11
|
csbeq2i |
⊢ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ⦋ 𝐺 / 𝑔 ⦌ ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) |
17 |
|
csbriota |
⊢ ⦋ 𝐺 / 𝑔 ⦌ ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) = ( ℩ 𝑧 ∈ 𝑇 [ 𝐺 / 𝑔 ] ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) |
18 |
17
|
a1i |
⊢ ( 𝐺 ∈ 𝑇 → ⦋ 𝐺 / 𝑔 ⦌ ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) = ( ℩ 𝑧 ∈ 𝑇 [ 𝐺 / 𝑔 ] ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) ) |
19 |
16 18
|
syl5eq |
⊢ ( 𝐺 ∈ 𝑇 → ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 [ 𝐺 / 𝑔 ] ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) ) |
20 |
|
sbcralg |
⊢ ( 𝐺 ∈ 𝑇 → ( [ 𝐺 / 𝑔 ] ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ↔ ∀ 𝑏 ∈ 𝑇 [ 𝐺 / 𝑔 ] ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) ) |
21 |
|
sbcimg |
⊢ ( 𝐺 ∈ 𝑇 → ( [ 𝐺 / 𝑔 ] ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ↔ ( [ 𝐺 / 𝑔 ] ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → [ 𝐺 / 𝑔 ] ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) ) |
22 |
|
sbc3an |
⊢ ( [ 𝐺 / 𝑔 ] ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) ↔ ( [ 𝐺 / 𝑔 ] 𝑏 ≠ ( I ↾ 𝐵 ) ∧ [ 𝐺 / 𝑔 ] ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ [ 𝐺 / 𝑔 ] ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) ) |
23 |
|
sbcg |
⊢ ( 𝐺 ∈ 𝑇 → ( [ 𝐺 / 𝑔 ] 𝑏 ≠ ( I ↾ 𝐵 ) ↔ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) |
24 |
|
sbcg |
⊢ ( 𝐺 ∈ 𝑇 → ( [ 𝐺 / 𝑔 ] ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ↔ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) |
25 |
|
sbcne12 |
⊢ ( [ 𝐺 / 𝑔 ] ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ↔ ⦋ 𝐺 / 𝑔 ⦌ ( 𝑅 ‘ 𝑏 ) ≠ ⦋ 𝐺 / 𝑔 ⦌ ( 𝑅 ‘ 𝑔 ) ) |
26 |
|
csbconstg |
⊢ ( 𝐺 ∈ 𝑇 → ⦋ 𝐺 / 𝑔 ⦌ ( 𝑅 ‘ 𝑏 ) = ( 𝑅 ‘ 𝑏 ) ) |
27 |
|
csbfv |
⊢ ⦋ 𝐺 / 𝑔 ⦌ ( 𝑅 ‘ 𝑔 ) = ( 𝑅 ‘ 𝐺 ) |
28 |
27
|
a1i |
⊢ ( 𝐺 ∈ 𝑇 → ⦋ 𝐺 / 𝑔 ⦌ ( 𝑅 ‘ 𝑔 ) = ( 𝑅 ‘ 𝐺 ) ) |
29 |
26 28
|
neeq12d |
⊢ ( 𝐺 ∈ 𝑇 → ( ⦋ 𝐺 / 𝑔 ⦌ ( 𝑅 ‘ 𝑏 ) ≠ ⦋ 𝐺 / 𝑔 ⦌ ( 𝑅 ‘ 𝑔 ) ↔ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) |
30 |
25 29
|
syl5bb |
⊢ ( 𝐺 ∈ 𝑇 → ( [ 𝐺 / 𝑔 ] ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ↔ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) |
31 |
23 24 30
|
3anbi123d |
⊢ ( 𝐺 ∈ 𝑇 → ( ( [ 𝐺 / 𝑔 ] 𝑏 ≠ ( I ↾ 𝐵 ) ∧ [ 𝐺 / 𝑔 ] ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ [ 𝐺 / 𝑔 ] ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) ↔ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) |
32 |
22 31
|
syl5bb |
⊢ ( 𝐺 ∈ 𝑇 → ( [ 𝐺 / 𝑔 ] ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) ↔ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) |
33 |
|
sbceq2g |
⊢ ( 𝐺 ∈ 𝑇 → ( [ 𝐺 / 𝑔 ] ( 𝑧 ‘ 𝑃 ) = 𝑌 ↔ ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ) ) |
34 |
32 33
|
imbi12d |
⊢ ( 𝐺 ∈ 𝑇 → ( ( [ 𝐺 / 𝑔 ] ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → [ 𝐺 / 𝑔 ] ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ↔ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ) ) ) |
35 |
21 34
|
bitrd |
⊢ ( 𝐺 ∈ 𝑇 → ( [ 𝐺 / 𝑔 ] ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ↔ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ) ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝐺 ∈ 𝑇 → ( ∀ 𝑏 ∈ 𝑇 [ 𝐺 / 𝑔 ] ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ↔ ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ) ) ) |
37 |
20 36
|
bitrd |
⊢ ( 𝐺 ∈ 𝑇 → ( [ 𝐺 / 𝑔 ] ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ↔ ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ) ) ) |
38 |
37
|
riotabidv |
⊢ ( 𝐺 ∈ 𝑇 → ( ℩ 𝑧 ∈ 𝑇 [ 𝐺 / 𝑔 ] ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ) ) ) |
39 |
19 38
|
eqtrd |
⊢ ( 𝐺 ∈ 𝑇 → ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ) ) ) |
40 |
15 39
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ) ) ) |
41 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
42 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
43 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
44 |
|
simp13r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐺 = ( I ↾ 𝐵 ) ) |
45 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝑏 ∈ 𝑇 ) |
46 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝑏 ≠ ( I ↾ 𝐵 ) ) |
47 |
45 46
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) |
48 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑌 = 𝑃 ) |
49 |
41 42 43 44 47 48
|
syl113anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑌 = 𝑃 ) |
50 |
49
|
3expa |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑌 = 𝑃 ) |
51 |
50
|
eqeq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ↔ ( 𝑧 ‘ 𝑃 ) = 𝑃 ) ) |
52 |
51
|
pm5.74da |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑏 ∈ 𝑇 ) → ( ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ) ↔ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑃 ) ) ) |
53 |
52
|
ralbidva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ( ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ) ↔ ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑃 ) ) ) |
54 |
53
|
riotabidv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑌 ) ) = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑃 ) ) ) |
55 |
40 54
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑃 ) ) ) |